Skip to main content
Log in

A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

The study compared the mechanical behavior of bioresorbable polymeric stents with various designs during deployment, and investigated their fatigue performance under pulsatile blood pressure loading.

Methods

Finite element simulations have been carried out to compare the mechanical performance of four bioresorbable polymeric stents, i.e., Absorb, Elixir, Igaki-Tamai and RevaMedical, during deployment in diseased artery. Tri-folded balloon was modelled to expand the crimped stent onto the three-layered arterial wall with plaque. Cyclic diastolic-systolic pressure loading was applied to both stent and arterial wall to study fatigue behavior.

Results

Stents with larger U-bend and longer axial strut demonstrate more flexibility but suffer from severe dogboning and recoiling effects. Stress concentrations in the stent, as well as in the plaque and artery, are higher for stents designed with increased rigidity such as those with smaller U-bends and shorter axial struts. Simulations of fatigue deformation for Elixir stent demonstrate that the U-bends, with high stress concentrations, have a potential risk of fatigue failure under pulsatile systolic-diastolic blood pressure as opposed to the counter metallic stents which are normally free of fatigue failure.

Conclusion

The structural behaviour of bioresorbable polymeric stent is strongly affected by its design, in terms of expansion, dogboning, recoiling and stress distribution during the deployment process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Ang, H. Y., H. Bulluck, P. Wong, S. S. Venkatraman, Y. Huang, and N. Foin. Bioresorbable stents: current and upcoming bioresorbable technologies. Int. J. Cardiol. 228:931–939, 2016.

    Article  Google Scholar 

  2. Averett, R. D. Experimental aspects and mechanical modeling paradigms for the prediction of degradation and failure in nanocomposite materials subjected to fatigue loading conditions. Dissertations & Thesis-Gradworks, 2008.

  3. Azaouzi, M., A. Makradi, and S. Belouettar. Fatigue life prediction of cardiovascular stent using finite element method. Comput. Methods Biomech. Biomed. Eng. 15(1):93–95, 2012.

    Article  Google Scholar 

  4. Bandar, A. M., M. Rosaire, and Y. Stephen. Coronary stents fracture: an engineering approach (review). Mater. Sci. Appl. 4(10):606–621, 2013.

    Google Scholar 

  5. Bedoya, J., C. A. Meyer, L. H. Timmins, M. R. Moreno, and J. E. Moore. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128(5):757–765, 2006.

    Article  Google Scholar 

  6. Bobel, A. C., and P. E. Mchugh. Computational analysis of the utilisation of the shape memory effect and balloon expansion in fully polymeric stent deployment. Cardiovasc. Eng. Technol. 9(1):1–13, 2017.

    Google Scholar 

  7. Bobel, A. C., S. Petisco, J. R. Sarasua, W. Wang, and P. E. Mchugh. Computational bench testing to evaluate the short-term mechanical performance of a polymeric stent. Cardiovasc. Eng. Technol. 6(4):519–532, 2015.

    Article  Google Scholar 

  8. Debusschere, N., P. Segers, P. Dubruel, B. Verhegghe, and M. De Beule. A finite element strategy to investigate the free expansion behaviour of a biodegradable polymeric stent. J. Biomech. 48(10):2012–2018, 2015.

    Article  Google Scholar 

  9. Dordoni, E., L. Petrini, W. Wu, F. Migliavacca, G. Dubini, and G. Pennati. Computational modeling to predict fatigue behavior of NiTi stents: what do we need? J. Funct. Biomater. 6(2):299–317, 2015.

    Article  Google Scholar 

  10. Dreher, M. L., S. Nagaraja, and B. Batchelor. Effects of fatigue on the chemical and mechanical degradation of model stent sub-units. J. Mech. Behav. Biomed. Mater. 59:139–145, 2016.

    Article  Google Scholar 

  11. Gajjar, C. R., and M. W. King. Degradation process. In: Resorbable Fiber-Forming Polymers for Biotextile Applications. Springer Briefs in Materials, Berlin: Springer, 2014, pp. 7–10.

  12. Gao, R. TCT-310 four-year clinical outcomes from randomized comparison of everolimus-eluting bioresorbable vascular scaffolds versus everolimus-eluting metallic stents in patients with coronary artery disease from ABSORB China Trial. J. Am. Coll. Cardiol. 72(13):B128, 2018.

    Article  Google Scholar 

  13. Gao, R., Y. Yang, Y. Han, Y. Huo, J. Chen, B. Yu, X. Su, L. Li, H. C. Kuo, S. W. Ying, W. F. Cheong, Y. L. Zhang, X. L. Su, B. Xu, J. J. Popma, and G. W. Stone. Bioresorbable vascular scaffolds versus metallic stents in patients with coronary artery disease: absorb China trial. J. Am. Coll. Cardiol. 66(21):2298–2309, 2015.

    Article  Google Scholar 

  14. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3(6):15–35, 2006.

    Article  Google Scholar 

  15. Gee, M. W., C. H. Förster, and W. A. Wall. A computational strategy for prestressing patient specific biomechanical problems under finite deformation. Int. J. Numer. Methods Biomed. Eng. 26:52–72, 2010.

    Article  MATH  Google Scholar 

  16. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity 61:1–48, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  17. Holzapfel, G. A., and R. W. Ogden. On the tension–compression switch in soft fibrous solids. Eur. J. Mech. A 49(49):561–569, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  18. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289(5):H2048–H2058, 2005.

    Article  Google Scholar 

  19. Kereiakes, D., S. Ellis, and G. Stone. TCT-61 Clinical outcomes following complete bioresorption of the Absorb everolimus-eluting bioresorbable scaffold: four-year results from the ABSORB III trial. J. Am. Coll. Cardiol. 72(13):B27, 2018.

    Article  Google Scholar 

  20. Kimura, T., K. Kozuma, K. Tanabe, S. Nakamura, M. Yamane, T. Muramatsu, S. Saito, J. Yajima, N. Hagiwara, K. Mitsudo, J. J. Popma, P. W. Serruys, S. H. Ying, S. Cao, P. Staehr, W. F. Cheong, H. Kusano, and G. W. Stone. A randomized trial evaluating everolimus-eluting absorb bioresorbable scaffolds vs. everolimus-eluting metallic stents in patients with coronary artery disease: absorb Japan. Eur. Heart J. 36(47):3332–3342, 2015.

    Article  Google Scholar 

  21. Lee, S. H., J. S. Park, D. G. Shin, Y. J. Kim, G. R. Hong, W. Kim, and B. S. Shim. Frequency of stent fracture as a cause of coronary restenosis after sirolimus-eluting stent implantation. Am. J. Cardiol. 100(4):627–630, 2007.

    Article  Google Scholar 

  22. Li, J., Q. Luo, Z. Xie, Y. Li, and Y. Zeng. Fatigue life analysis and experimental verification of coronary stent. Heart Vessels 25(4):333–337, 2010.

    Article  Google Scholar 

  23. Li, K. W., R. W. Ogden, and G. A. Holzapfel. Computational method for excluding fibers under compression in modeling soft fibrous solids. Eur. J. Mech. A 57:178–193, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, K. W., R. W. Ogden, and G. A. Holzapfel. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues. J. R. Soc. Interface 15(138):20170766, 2018.

    Article  Google Scholar 

  25. Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27(2):195–204, 1994.

    Article  Google Scholar 

  26. Migliavacca, F., L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, and G. Dubini. A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys. 27(1):13–18, 2005.

    Article  Google Scholar 

  27. Nakazawa, G., A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, F. D. Kolodgie, and R. Virmani. Incidence and predictors of drug-eluting stent fracture in human coronary artery: a pathologic analysis. J. Am. Coll. Cardiol. 54(21):1924–1931, 2009.

    Article  Google Scholar 

  28. Ogden, R. W. Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A 326(1567):565–584, 1972.

    Article  MATH  Google Scholar 

  29. Osswald, T. A. Understanding Polymer Processing: Processes and Governing Equations. Munich: Carl Hanser Verlag, 2015.

    Google Scholar 

  30. Pauck, R. G., and B. D. Reddy. Computational analysis of the radial mechanical performance of PLLA coronary artery stents. Med. Eng. Phys. 37(1):7–12, 2015.

    Article  Google Scholar 

  31. Pierce, D. M., T. E. Fastl, B. Rodriguez-Vila, P. Verbrugghe, I. Fourneau, G. Maleux, P. Herijgers, J. Enrique, and G. A. Holzapfel. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. J. Mech. Behav. Biomed. Mater. 47:147–164, 2015.

    Article  Google Scholar 

  32. Schiavone, A., C. Abunassar, S. Hossainy, and L. G. Zhao. Computational analysis of mechanical stress–strain interaction of a bioresorbable scaffold with blood vessel. J. Biomech. 49(13):2677–2683, 2016.

    Article  Google Scholar 

  33. Schiavone, A., T. Qiu, and L. G. Zhao. Crimping and deployment of metallic and polymeric stents-finite element modelling. Vessel Plus 1(1):12–21, 2017.

    Article  Google Scholar 

  34. Schiavone, A., and L. G. Zhao. A computational study of stent performance by considering vessel anisotropy and residual stresses. Mater. Sci. Eng. C 62:307–316, 2016.

    Article  Google Scholar 

  35. Schiavone, A., L. G. Zhao, and A. A. Abdel-Wahab. Effects of material, coating, design and plaque composition on stent deployment inside a stenotic artery—finite element simulation. Mater. Sci. Eng. C 42:479–488, 2014.

    Article  Google Scholar 

  36. Shaikh, F., R. Maddikunta, M. Djelmami-Hani, J. Solis, S. Allaqaband, and T. Bajwa. Stent fracture, an incidental finding or a significant marker of clinical in-stent restenosis? Catheter. Cardiovasc. Interv. 71(5):614–618, 2008.

    Article  Google Scholar 

  37. Testa, L., A. Latib, R. A. Montone, A. Colombo, and F. Bedogni. Coronary bioresorbable vascular scaffold use in the treatment of coronary artery disease. Circ. Cardiovasc. Interv. 9(7):e3978, 2016.

    Article  Google Scholar 

  38. Timmins, L. H., C. A. Meyer, M. R. Moreno, and J. E. Moore, Jr. Mechanical modeling of stents deployed in tapered arteries. Ann. Biomed. Eng. 36(12):2042–2050, 2008.

    Article  Google Scholar 

  39. Vasava, P., P. Jalali, M. Dabagh, and P. J. Kolari. Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: study of hypotension and hypertension. Comput. Math. Methods Med. 20(1):861837, 2012.

    MathSciNet  MATH  Google Scholar 

  40. Weisbecker, H., D. M. Pierce, and G. A. Holzapfel. A generalized prestressing algorithm for finite element simulations of preloaded geometries with application to the aorta. Int. J. Numer. Methods Biomed. Eng. 30:857–872, 2014.

    Article  Google Scholar 

  41. Xu, B., Y. Yang, Y. Han, Y. Huo, L. Wang, X. Qi, J. Li, Y. Chen, H. Kuo, S. Ying, W. Cheong, Y. Zhang, X. Su, J. Popma, R. Gao, and G. W. Stone. Comparison of everolimus-eluting bioresorbable vascular scaffolds and metallic stents: three-year clinical outcomes from the ABSORB China randomised trial. Eurointervention. 14(5):554–561, 2018.

    Article  Google Scholar 

  42. Yamaji, K., Y. Ueki, G. Souteyrand, J. Daemen, J. Wiebe, H. Nef, T. Adriaenssens, J. P. Loh, B. Lattuca, J. J. Wykrzykowska, J. Gomez-Lara, L. Timmers, P. Motreff, P. Hoppmann, M. Abdel-Wahab, R. A. Byrne, F. Meincke, N. Boeder, B. Honton, C. J. O’Sullivan, A. Ielasi, N. Delarche, G. Christ, J. K. T. Lee, M. Lee, N. Amabile, A. Karagiannis, S. Windecker, and L. Räber. Mechanisms of very late bioresorbable scaffold thrombosis: the INVEST Registry. J. Am. Coll. Cardiol. 70(19):2330–2344, 2017.

    Article  Google Scholar 

  43. Yamaji, K., Y. Ueki, G. Souteyrand, J. Daemen, J. Wiebe, H. Nef, T. Adriaenssens, J. P. Loh, B. Lattuca, J. J. Wykrzykowska, J. Josep, L. Timmers, P. Motreff, P. Hoppmann, M. Abdel-Wahab, R. A. Byrne, F. Meincke, N. Boeder, B. Honton, C. J. O’Sullivan, A. Ielasi, N. Delarche, G. Christ, J. K. T. Lee, M. Lee, N. Amabile, A. Karagiannis, S. Windecker, and L. Räber. Mechanisms of very late bioresorbable scaffold thrombosis—the INVEST registry. J. Am. Coll. Cardiol. 70:2331–2344, 2017.

    Article  Google Scholar 

Download references

Acknowledgments

LGZ acknowledge the support from the British Heart Foundation (Grant Number: FS/15/21/31424; Title: Towards controlling the mechanical performance of polymeric bioresorbable vascular scaffold during biodegradation) and the Royal Society of UK (Grant Number: IE160066; Title: Evaluating the Performance of Additively Manufactured Endovascular Scaffolds).

Conflict of interest

Authors T. Y. Qiu, L. G. Zhao and M. Song declare that they have no conflicts of interest to this work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Y. Qiu.

Additional information

Associate Editor Dr. Ajit P. Yoganathan and Dr. Hwa Liang Leo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, T.Y., Zhao, L.G. & Song, M. A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations. Cardiovasc Eng Tech 10, 46–60 (2019). https://doi.org/10.1007/s13239-018-00397-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-00397-9

Keywords

Navigation