Skip to main content

Advertisement

Log in

A New Method for Simulating Embolic Coils as Heterogeneous Porous Media

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

To gain insight into the influence of coils on aneurysmal hemodynamics, computational fluid dynamics (CFD) can be used. Conventional methods of modeling coils consider the explicit geometry of the deployed devices within the aneurysm and discretize the fluid domain. However, the complex geometry of a coil mass leads to cumbersome domain discretization along with a significant number of mesh elements. These problems have motivated a homogeneous porous medium coil model, whereby the explicit geometry of the coils is greatly simplified, and relevant homogeneous porous medium parameters are approximated. Unfortunately, since the coils are not distributed uniformly in the aneurysm, the homogeneity assumption is no longer valid.

Methods

In this paper, a novel heterogeneous porous medium approach is introduced. To verify the model, we performed CFD simulations to calculate the pressure drop caused by actual deployed coils in a straight cylinder. Next, we considered three different anatomical aneurysm geometries virtually treated with coils and studied the hemodynamics using the presented heterogeneous porous medium model.

Results

We show that the blood kinetic energy predicted by the heterogeneous model is in strong agreement with the conventional approach. The homogeneity assumption, on the other hand, significantly over-predicts the blood kinetic energy within the aneurysmal sac.

Conclusions

These results indicate that the benefits of the porous medium assumption can be retained if a heterogeneous approach is applied. Implementation of the presented method led to a substantial reduction in the total number of mesh elements compared to the conventional method, and greater accuracy was enabled by considering heterogeneity compared to the homogenous approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Arvo, J. Graphics Gems II. San Diego: Academic Press, 1991.

    MATH  Google Scholar 

  2. Augsburger, L., P. Reymond, D. A. Rufenacht, and N. Stergiopulos. Intracranial stents being modeled as a porous medium: flow simulation in stented cerebral aneurysms. Ann. Biomed. Eng. 39:850–863, 2011.

    Article  Google Scholar 

  3. Babiker, M. H., B. Chong, L. F. Gonzalez, S. Cheema, and D. H. Frakes. Finite element modeling of embolic coil deployment: multifactor characterization of treatment effects on cerebral aneurysm hemodynamics. J. Biomech. 46:2809–2816, 2013.

    Article  Google Scholar 

  4. Babiker, M. H., L. F. Gonzalez, J. Ryan, F. Albuquerque, D. Collins, A. Elvikis, and D. H. Frakes. Influence of stent configuration on cerebral aneurysm fluid dynamics. J. Biomech. 45:440–447, 2012.

    Article  Google Scholar 

  5. Bear, J. Dynamics of Fluids in Porous Media. New York: Dover, 1972.

    MATH  Google Scholar 

  6. Carman, P. C. Flow of Gases Through Porous Media. New York: Academic Press, 1956.

    MATH  Google Scholar 

  7. Cha, K. S., E. Balaras, B. B. Lieber, C. Sadasivan, and A. K. Wakhloo. Modeling the Interaction of coils with the local blood flow after coil embolization of intracranial aneurysms. J. Biomech. Eng. 129:873–879, 2007.

    Article  Google Scholar 

  8. Chalouhi, N., S. Tjoumakaris, R. M. Starke, L. F. Gonzalez, C. Randazzo, D. Hasan, J. F. McMahon, S. Singhal, L. A. Moukarzel, A. S. Dumont, R. Rosenwasser, and P. Jabbour. Comparison of flow diversion and coiling in large unruptured intracranial saccular aneurysms. Stroke 44:2150–2154, 2013.

    Article  Google Scholar 

  9. Chaudhury, R. A., M. Herrmann, D. H. Frakes, and R. J. Adrian. Length and time for development of laminar flow in tubes following a step increase of volume flux. Exp. Fluids 56:22, 2015.

    Article  Google Scholar 

  10. Chueh, J.-Y., S. Vedantham, A. K. Wakhloo, S. L. Carniato, A. S. Puri, C. Bzura, S. Coffin, A. A. Bogdanov, and M. J. Gounis. Aneurysm permeability following coil embolization: packing density and coil distribution. J. NeuroInterventional Surg. 2014. https://doi.org/10.1136/neurintsurg-2014-011289.

    Google Scholar 

  11. Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 48:89–94, 1952.

    Google Scholar 

  12. Ergun, S., and A. A. Orning. Fluid flow through randomly packed columns and fluidized beds. Ind. Eng. Chem. 41:1179–1184, 1949.

    Article  Google Scholar 

  13. Gascou, G., R. Ferrara, D. Ambard, M. Sanchez, K. Lobotesis, F. Jourdan, and V. Costalat. The pressure reduction coefficient: a new parameter to assess aneurysmal blood stasis induced by flow diverters/disruptors. Interv. Neuroradiol. 23:41–46, 2017.

    Article  Google Scholar 

  14. Guglielmi, G., F. Viñuela, J. Dion, and G. Duckwiler. Electrothrombosis of saccular aneurysms via endovascular approach. J. Neurosurg. 75:8–14, 1991.

    Article  Google Scholar 

  15. Ham, F., and G. Iaccarino. Energy Conservation in Collocated Discretization Schemes on Unstructured Meshes. Annual Research Briefs. Stanford: Center for Turbulence Research, Stanford University, pp. 3–14, 2004.

    Google Scholar 

  16. Ham, F., and K. Mattsson. Accurate and stable finite volume operators for unstructured flow solvers. Annual Research Briefs. Stanford: Center for Turbulence Research, Stanford University, pp. 243–261, 2006.

    Google Scholar 

  17. Hsu, C. T., and P. Cheng. Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33:1587–1597, 1990.

    Article  MATH  Google Scholar 

  18. Kakalis, N. M. P., A. P. Mitsos, J. V. Byrne, and Y. Ventikos. The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. IEEE Trans. Med. Imaging 27:814–824, 2008.

    Article  Google Scholar 

  19. Khanafer, K., R. Berguer, M. Schlicht, and J. L. Bull. Numerical modeling of coil compaction in the treatment of cerebral aneurysms using porous media theory. J. Porous Media 12:887–897, 2009.

    Article  Google Scholar 

  20. Kim, J., and P. Moin. Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59:308–323, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kundu, P. K., I. M. Cohen, and D. R. Dowling. Fluid Mechanics. New York: Academic Press, 2012.

    MATH  Google Scholar 

  22. Levitt, M. R., M. C. Barbour, S. Rolland du Roscoat, C. Geindreau, V. K. Chivukula, P. M. McGah, J. D. Nerva, R. P. Morton, L. J. Kim, and A. Aliseda. Computational fluid dynamics of cerebral aneurysm coiling using high-resolution and high-energy synchrotron X-ray microtomography: comparison with the homogeneous porous medium approach. J. NeuroInterventional Surg. 2016. https://doi.org/10.1136/neurintsurg-2016-012479.

    Google Scholar 

  23. Mitsos, A. P., N. M. P. Kakalis, Y. P. Ventikos, and J. V. Byrne. Haemodynamic simulation of aneurysm coiling in an anatomically accurate computational fluid dynamics model: technical note. Neuroradiology 50:341–347, 2008.

    Article  Google Scholar 

  24. Morales, H. G., I. Larrabide, M. L. Aguilar, A. J. Geers, J. M. Macho, L. S. Roman, and A. F. Frangi. Comparison of two techniques of endovascular coil modeling in cerebral aneurysms using CFD. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012. https://doi.org/10.1109/isbi.2012.6235780.

  25. Nair, P., B. W. Chong, A. Indahlastari, J. Ryan, C. Workman, M. Haithem-Babiker, H. Yadollahi Farsani, C. E. Baccin, and D. Frakes. Hemodynamic characterization of geometric cerebral aneurysm templates treated with embolic coils. J. Biomech. Eng. 138:021011, 2016.

    Article  Google Scholar 

  26. Roache, P. J. Perspective: a method for uniform reporting of grid refinement studies. J. Fluids Eng. 116:405–413, 1994.

    Article  Google Scholar 

  27. Sadasivan, C., J. Brownstein, B. Patel, R. Dholakia, J. Santore, F. Al-Mufti, E. Puig, A. Rakian, K. D. Fernandez-Prada, M. S. Elhammady, H. Farhat, D. J. Fiorella, H. H. Woo, M. A. Aziz-Sultan, and B. B. Lieber. In vitro quantification of the size distribution of intrasaccular voids left after endovascular coiling of cerebral aneurysms. Cardiovasc. Eng. Technol. 4:63–74, 2013.

    Article  Google Scholar 

  28. Sadasivan, C., E. Swartwout, A. D. Kappel, H. H. Woo, D. J. Fiorella, and B. B. Lieber. In vitro measurement of the permeability of endovascular coils deployed in cerebral aneurysms. J. NeuroInterventional Surg. 2018. https://doi.org/10.1136/neurintsurg-2017-013481.

    Google Scholar 

  29. Vafai, K. Porous Media: Applications in Biological Systems and Biotechnology. Boca Raton: CRC Press, 2010.

    Book  Google Scholar 

  30. Vafai, K. Handbook of Porous Media (3rd ed.). Boca Raton: CRC Press, 2015.

    MATH  Google Scholar 

  31. Wang, L., L.-P. Wang, Z. Guo, and J. Mi. Volume-averaged macroscopic equation for fluid flow in moving porous media. Int. J. Heat Mass Transf. 82:357–368, 2015.

    Article  Google Scholar 

  32. Whitaker, S. Flow in porous media I: A theoretical derivation of Darcy’s law. Transp. Porous Media 1:3–25, 1986.

    Article  Google Scholar 

  33. Whitaker, S. The Method of Averaging. New York: Springer, 1998.

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support from the National Science Foundation (Award #1512553). We would like to thank Endovantage, LLC for providing us with the numerical coil deployments.

Funding

This study was funded by NSF (Award #1512553).

Conflict of interest

Author Hooman Yadollahi-Farsani, Author Marcus Herrmann, Author David Frakes, and Author Brian Chong declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hooman Yadollahi-Farsani.

Additional information

Associate Editors Dr. Ajit P. Yoganathan & Dr. Matthew J. Gounis oversaw the review of this article.

Appendices

Appendix A

Algorithm used to generate the porosity and permeability maps:

  1. (1)

    Read in the STL file.

  2. (2)

    Break the domain into a lattice of hexahedra.

  3. (3)

    For each hexahedral, find the colliding surface mesh triangles.

  4. (4)

    Watertight the coil portion which falls within the hexahedral by closing the open faces.

  5. (5)

    Find the porosity (coil volume/sac volume).

  6. (6)

    Use the Carman-Kozeny equation to find permeability.

  7. (7)

    Associate each porosity/permeability to its position in the CFD mesh using a tri-linear interpolation method and generate the map.

  8. (8)

    Use the generated map as an input for the source term in momentum equation.

Appendix B

See Tables 1, 2, 3, 4, 5, and 6.

Table 1 Total number of mesh elements for the cases considered in the study.
Table 2 Aneurysmal K.E. (kg/ms2) for the anatomical cases considered in the study.
Table 3 Pressure drop values (mmHg) found numerically across the verification model.
Table 4 Grid Convergence Index (GCI) analysis for the anatomical models based on aneurysmal K.E. (kg/ms2).
Table 5 Grid Convergence Index (GCI) analysis for the coiled verification model based on pressure drop values.
Table 6 Two-norms calculated for different cases in the numerical studies for Mesh 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadollahi-Farsani, H., Herrmann, M., Frakes, D. et al. A New Method for Simulating Embolic Coils as Heterogeneous Porous Media. Cardiovasc Eng Tech 10, 32–45 (2019). https://doi.org/10.1007/s13239-018-00383-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-00383-1

Keywords

Navigation