Skip to main content
Log in

In Vitro Validation of Patient-Specific Hemodynamic Simulations in Coronary Aneurysms Caused by Kawasaki Disease

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

To perform experimental validation of computational fluid dynamics (CFD) applied to patient specific coronary aneurysm anatomy of Kawasaki disease. We quantified hemodynamics in a patient-specific coronary artery aneurysm physical phantom under physiologic rest and exercise flow conditions. Using phase contrast MRI (PCMRI), we acquired 3-component flow velocity at two slice locations in the aneurysms. We then performed numerical simulations with the same geometry and inflow conditions, and performed qualitative and quantitative comparisons of velocities between experimental measurements and simulation results. We observed excellent qualitative agreement in flow pattern features. The quantitative spatially and temporally varying differences in velocity between PCMRI and CFD were proportional to the flow velocity. As a result, the percent discrepancy between simulation and experiment was relatively constant regardless of flow velocity variations. Through 1D and 2D quantitative comparisons, we found a 5–17% difference between measured and simulated velocities. Additional analysis assessed wall shear stress differences between deformable and rigid wall simulations. This study demonstrated that CFD produced good qualitative and quantitative predictions of velocities in a realistic coronary aneurysm anatomy under physiological flow conditions. The results provide insights on factors that may influence the level of agreement, and a set of in vitro experimental data that can be used by others to compare against CFD simulation results. The findings of this study increase confidence in the use of CFD for investigating hemodynamics in the specialized anatomy of coronary aneurysms. This provides a basis for future hemodynamics studies in patient-specific models of Kawasaki disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Acevedo-Bolton, G., L. D. Jou, B. P. Dispensa, M. T. Lawton, R. T. Higashida, A. J. Martin, W. L. Young, and D. Saloner. Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report. Neurosurgery 59(2):E429–E430, 2006; author reply E429–E430.

  2. Bertolotti, C., V. Deplano, J. Fuseri, and P. Dupouy. Numerical and experimental models of post-operative realistic flows in stenosed coronary bypasses. J. Biomech. 34(8):1049–1064, 2001.

    Article  Google Scholar 

  3. Botnar, R., G. Rappitsch, M. B. Scheidegger, D. Liepsch, K. Perktold, and P. Boesiger. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J. Biomech. 33(2):137–144, 2000.

    Article  Google Scholar 

  4. Esmaily-Moghadam, M., T.-Y. Hsia, and A. L. Marsden. A non-discrete method for computation of residence time in fluid mechanics simulations. Phys. Fluids 25(11):110802, 2013.

    Article  Google Scholar 

  5. Figueroa, C. A., I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes, and C. A. Taylor. A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput. Methods Appl. Mech. Eng. 195(41–43):5685–5706, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  6. Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130(2):021015, 2008.

    Article  Google Scholar 

  7. Frauenfelder, T., M. Lotfey, T. Boehm, and S. Wildermuth. Computational fluid dynamics: hemodynamic changes in abdominal aortic aneurysm after stent-graft implantation. Cardiovasc. Intervent. Radiol. 29(4):613–623, 2006.

    Article  Google Scholar 

  8. Gordon, J., A. Kahn, and J. Burns. When children with kawasaki disease grow up myocardial and vascular complications in adulthood. J. Am. Coll. Cardiol. 54(21):1911–1920, 2009.

    Article  Google Scholar 

  9. Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128(6):844–851, 2006.

    Article  Google Scholar 

  10. Holman, R., E. Belay, K. Christensen, A. Folkema, C. Steiner, and L. Schonberger. Hospitalizations for Kawasaki syndrome among children in the United States, 1997–2007. Pediatr. Infect. Dis. J. 29(6):483–488, 2010.

    Google Scholar 

  11. Kato, H., T. Sugimura, T. Akagi, N. Sato, K. Hashino, Y. Maeno, T. Kazue, G. Eto, and R. Yamakawa. Long-term consequences of Kawasaki disease—a 10- to 21-year follow-up study of 594 patients. Circulation 94(6):1379–1385, 1996.

    Article  Google Scholar 

  12. Khunatorn, Y., R. Shandas, C. DeGroff, and S. Mahalingam. Comparison of in vitro velocity measurements in a scaled total cavopulmonary connection with computational predictions. Ann. Biomed. Eng. 31(7):810–822, 2003.

    Article  Google Scholar 

  13. Kim, H. J., I. E. Vignon-Clementel, J. S. Coogan, C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Patient-specific modeling of blood flow and pressure in human coronary arteries. Ann. Biomed. Eng. 38(10):3195–3209, 2010.

    Article  Google Scholar 

  14. Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann. Biomed. Eng. 33(3):257–269, 2005.

    Article  Google Scholar 

  15. Kung, E., A. Baretta, C. Baker, G. Arbia, G. Biglino, C. Corsini, S. Schievano, I. E. Vignon-Clementel, G. Dubini, and G. Pennati. Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases. J. Biomech. 46(2):423–429, 2012.

    Article  Google Scholar 

  16. Kung, E., A. Les, C. A. Figueroa, F. Medina, K. Arcaute, R. Wicker, M. McConnell, and C. Taylor. In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39(7):1947–1960, 2011.

    Article  Google Scholar 

  17. Kung, E. O., A. S. Les, F. Medina, R. B. Wicker, M. V. McConnell, and C. A. Taylor. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J. Biomech. Eng. 133(4):041003, 2011.

    Article  Google Scholar 

  18. Les, A. S., S. C. Shadden, C. A. Figueroa, J. M. Park, M. M. Tedesco, R. J. Herfkens, R. L. Dalman, and C. A. Taylor. Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38(4):1288–1313, 2010.

    Article  Google Scholar 

  19. Lotz, J., C. Meier, A. Leppert, and M. Galanski. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics 22(3):651–671, 2002.

    Article  Google Scholar 

  20. Lu, X., A. Pandit, and G. Kassab. Biaxial incremental homeostatic elastic moduli of coronary artery: two-layer model. Am. J. Physiol. Heart Circ. Physiol. 287(4):H1663–H1669, 2004.

    Google Scholar 

  21. Marshall, I., S. Zhao, P. Papathanasopoulou, P. Hoskins, and Y. Xu. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J. Biomech. 37(5):679–687, 2004.

    Article  Google Scholar 

  22. McCauley, T. R., C. S. Pena, C. K. Holland, T. B. Price, and J. C. Gore. Validation of volume flow measurements with cine phase-contrast MR imaging for peripheral arterial waveforms. J. Magn. Reson. Imaging 5(6):663–668, 1995.

    Article  Google Scholar 

  23. Nakamura, Y., M. Yashiro, R. Uehara, A. Sadakane, S. Tsuboi, Y. Aoyama, K. Kotani, E.-O. Tsogzolbaatar, and H. Yanagawa. Epidemiologic features of Kawasaki disease in Japan: results of the 2009–2010 nationwide survey. J. Epidemiol. 22(3):216–221, 2012.

    Google Scholar 

  24. Newburger, J., M. Takahashi, A. Beiser, J. Burns, J. Bastian, K. Chung, S. Colan, C. Duffy, D. Fulton, M. Glode, et al. A single intravenous-infusion of gamma-globulin as compared with 4 infusions in the treatment of acute kawasaki syndrome. N. Engl. J. Med. 324(23):1633–1639, 1991.

    Article  Google Scholar 

  25. Newburger, J. W., M. Takahashi, M. A. Gerber, M. H. Gewitz, L. Y. Tani, J. C. Burns, S. T. Shulman, A. F. Bolger, P. Ferrieri, R. S. Baltimore, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114(6):1708–1733, 2004.

    Article  Google Scholar 

  26. Papathanasopoulou, P., S. Zhao, U. Kohler, M. B. Robertson, Q. Long, P. Hoskins, X. Y. Xu, and I. Marshall. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging 17(2):153–162, 2003.

    Article  Google Scholar 

  27. Pekkan, K., D. de Zelicourt, L. Ge, F. Sotiropoulos, D. Frakes, M. A. Fogel, and A. P. Yoganathan. Physics-driven CFD modeling of complex anatomical cardiovascular flows—a TCPC case study. Ann. Biomed. Eng. 33(3):284–300, 2005.

    Article  Google Scholar 

  28. Ryu, K., T. M. Healy, A. E. Ensley, S. Sharma, C. Lucas, and A. P. Yoganathan. Importance of accurate geometry in the study of the total cavopulmonary connection: computational simulations and in vitro experiments. Ann. Biomed. Eng. 29(10):844–853, 2001.

    Article  Google Scholar 

  29. Sankaran, S., M. Moghadam, A. Kahn, E. Tseng, J. Guccione, and A. Marsden. Patient-specific multiscale modeling of blood flow for coronary artery bypass graft surgery. Ann. Biomed. Eng. 40(10):2228–2242, 2012.

    Article  Google Scholar 

  30. Santamarina, A., E. Weydahl, J. Siegel, and J. Moore. Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Ann. Biomed. Eng. 26(6):944–954, 1998.

    Article  Google Scholar 

  31. Schmidt, J., S. Delp, M. Sherman, C. Taylor, V. Pande, and R. Altman. The Simbios National Center: systems biology in motion. Proc. IEEE 96(8):1266–1280, 2008.

    Article  Google Scholar 

  32. Sengupta, D., A. Kahn, J. Burns, S. Sankaran, S. Shadden, and A. Marsden. Image-based modeling of hemodynamics in coronary artery aneurysms caused by Kawasaki disease. Biomech. Model. Mechanobiol. 11(6):915–932, 2012.

    Article  Google Scholar 

  33. Steinman, D. A., Y. Hoi, P. Fahy, L. Morris, M. T. Walsh, N. Aristokleous, A. S. Anayiotos, Y. Papaharilaou, A. Arzani, S. C. Shadden, et al. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm. In: The ASME 2012 Summer Bioengineering Conference CFD Challenge, Vol. 135(2), p. 021016, 2013.

  34. Wang, C., K. Pekkan, D. de Zelicourt, M. Horner, A. Parihar, A. Kulkarni, and A. P. Yoganathan. Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections. Ann. Biomed. Eng. 35(11):1840–1856, 2007.

    Article  Google Scholar 

  35. Zeng, D., E. Boutsianis, M. Ammann, K. Boomsma, S. Wildermuth, and D. Poulikakos. A study on the compliance of a right coronary artery and its impact on wall shear stress. J. Biomech. Eng. Trans. ASME 130(4):014014, 2008.

    Article  Google Scholar 

  36. Zhao, S. Z., P. Papathanasopoulou, Q. Long, I. Marshall, and X. Y. Xu. Comparative study of magnetic resonance imaging and image-based computational fluid dynamics for quantification of pulsatile flow in a carotid bifurcation phantom. Ann. Biomed. Eng. 31(8):962–971, 2003.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Robert Bussell for assistance with MR imaging, and the University of Texas at El Paso for the phantom construction. This work was supported by the National Institutes of Health Heart, Lung and Blood Institute (HL102596A), and a Burroughs Wellcome Fund Career Award at the Scientific Interface.

Conflict of interest

Ethan Kung, Andrew M. Kahn, Jane C. Burns, and Alison Marsden declare that they have no conflict of interest.

Human Studies/Informed Consent

All imaging and patient data was collected under a protocol approved by the Institutional Review Board of University of California San Diego.

Animal Studies

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison Marsden.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kung, E., Kahn, A.M., Burns, J.C. et al. In Vitro Validation of Patient-Specific Hemodynamic Simulations in Coronary Aneurysms Caused by Kawasaki Disease. Cardiovasc Eng Tech 5, 189–201 (2014). https://doi.org/10.1007/s13239-014-0184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-014-0184-8

Keywords

Navigation