Skip to main content

Advertisement

Log in

Application of biotechnology in sericulture: Progress, scope and prospect

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Traditional sericulture represents rearing of silkworm for production of silk that provides livelihood opportunity to millions of people in the country besides earning foreign exchange. The time has come to diversify the whole sericulture process for meaningful realization of its output under the present day scenario. The advent of modern biotechnology and its application have opened a new arena of the synthesized science for silk production. The vast potential of silk industry can effectively be exploited by the application of modern day biotechnological approaches like, marker assisted selection and expression of foreign protein through transgenic approaches. On the other hand, the silk quality has been enhanced using probiotics and providing artificial feed to the silkworm. The potential of silk has been further exploited for biomedical applications. In this communication the comprehensive account of biotechnological applications in sericulture and its byproducts for the development of sericulture industry are compiled while emphasizing the need of applying modern biotechnology for meaningful growth and development of sericulture and silk industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abulyazid I, Elshafei A, Mousa S, El-Said E, Taha R. Molecular diagnosis for the silkworm Bombyx mori L. viral and bacterial diseases in the irradiated and non irradiated individuals. Isotope Radiat Res. 2007;39:545–66.

    Google Scholar 

  2. Agarwal S. Genetic transformation and plant regeneration studies in Morus alba L. Doctoral thesis. Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, India. 2002.

  3. Agarwal S, Kanwar K. Comparison of genetic transformation in Morus alba L. via different regeneration systems. Plant Cell Rep. 2007;26:177–85.

    CAS  PubMed  Google Scholar 

  4. Agarwal S, Kanwar K, Sharma DR. Factors affecting secondary somatic embryogenesis and embryo maturation in Morus alba L. Scientia Hortic. 2004;102:359–68.

    Google Scholar 

  5. Aggarwal RK, Udaykumar D, Hender PS, Sarkar A, Singh L. Isolation and characterization of six novel microsatellite markers for mulberry (Morus indica). Mol Ecol Notes. 2004;4:477–9.

    CAS  Google Scholar 

  6. Aharoni A, Dixit S, Jetter R, Van Thoenes, AG, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alterscuticle properties, and confers drought tolerance when over expressed in Arabidopsis. Plant Cell. 2004;16:2463–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ahmad P, Sharma S, Srivastava PS. In vitro selection of NaHCO3 tolerant cultivars of Morus alba (Local and Sujanpur) in response to morphological and biochemical parameters. Hortic Sci. 2007;34:114–22.

    CAS  Google Scholar 

  8. Akkir DE, Yildiran FAB, Çakir S. Molecular analysis of three local silkworm breeds (Alaca, Bursa Beyazı and Hatay Sarısı) by RAPD-PCR and SDS-PAGE methods. Kafkas Univ Vet Fak Derg. 2010;16:S265–9.

    Google Scholar 

  9. Akram M, Aftab F. Efficient micropropagation and rooting of king white mulberry (Morus macroura Miq.) var. laevigata from nodal explants of mature tree. Pak J Bot. 2012;44:285–9.

    CAS  Google Scholar 

  10. Anil Kumar HV, Muralidhar TS, Munirajappa R. RAPD analysis of EMS mutagenised mulberry genotype RFS135. Schol J Biotechnol. 2012;1:1–7.

    Google Scholar 

  11. Anis M, Faisal M, Singh SK. Micropropagation of mulberry (Morus alba L.) through in vitro culture of shoot tip and nodal explants. Plant Tissue Cult. 2003;13:47–51.

    Google Scholar 

  12. Anuradha JH, Vijayan K, Nair CV, Manjula A. A novel and efficient protocol for the isolation of genomic DNA from mulberry (Morus L.). Emir J Food Agric. 2013;25:124–31.

    Google Scholar 

  13. Aramwit P, Sangcakul A. The effects of sericin cream on wound healing in rats. Biosci Biotechnol Biochem. 2007;71:2473–7.

    CAS  PubMed  Google Scholar 

  14. Aramwit P, Kanokpanont S, De-Eknamkul W, Kamei K, Srichana T. The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. J Biomater Sci Polym Ed. 2009;20:1295–306.

    CAS  PubMed  Google Scholar 

  15. Aramwit P, Kanokpanont S, Nakpheng T, Srichana T. The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci. 2010;11:2200–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Arora V, Ghosh MK, Gangopadhyay G. SSR markers for assessing the hybrid nature of two high yielding mulberry varieties. Int J Genet Eng Biotechnol. 2014;52:191–6.

    Google Scholar 

  17. Arora V, Ghosh MK, Pal S, Gangopadhyay G. Allele specific CAPS marker development and characterization of chalcone synthase gene in Indian mulberry (Morus spp., family Moraceae). PLoS ONE. 2017;12:e0179189.

    PubMed  PubMed Central  Google Scholar 

  18. Attathom T, Attathom S, Kumpratueang S, Audtho M. Early detection of Grasserie disease of silkworm, Bombyx mori by DNA probe. In: Proceeding of 32nd Kasetsart University annual conference: plant science, Kasetsart University, Bangkok, Thailand; 1994. pp. 257–271.

  19. Awasthi AK, Nagaraja GM, Naik GV, Kanginakudru S, Thangavelu K, Nagaraju J. Genetic diversity in mulberry (genus Morus) as revealed by RAPD and ISSR marker assays. BMC Genet. 2004;5:1–9.

    PubMed  PubMed Central  Google Scholar 

  20. Awasthi AK, Pradeep AR, Srivastava PP, Vijayan K, Kumar V, Urs SR. PCR detection of densonucleosis virus isolates in silkworm (Bombyx mori) from India and their nucleotide variability. Indian J Biotechnol. 2008;7:56–60.

    CAS  Google Scholar 

  21. Awasthi AK, Kar PK, Srivastava PP, Nidhi R, Vijayan K, Pradeep AR, Urs SR. Molecular evaluation of bivoltine, polyvoltine and mutant silkworm (Bombyx mori L.) with RAPD, ISSR and RFLP-STS markers. Indian J Biotechnol. 2008;7:188–94.

    CAS  Google Scholar 

  22. Babu KR, Ramakrishna S, Reddy YHK, Lakshmi G, Naidu NV, Basha SS, Bhaskar M. Metabolic alterations and molecular mechanism in silkworm larvae during viral infection: a review. Afr J Biotechnol. 2009;8:899–907.

    CAS  Google Scholar 

  23. Bai PKKS, Bai MR. Studies on the effect of a probiotic and a neutraceutical agent on growth, development and commercial characteristics of silkworm, Bombyx mori. Indian J Seric. 2012;51:37–42.

    Google Scholar 

  24. Bajaj YPS. Biotechnology in agriculture and foresty, vol. 2. Berlin: Springer Verlag; 1986.

    Google Scholar 

  25. Bajwa GA, Ahmed N, Shah SH, Adnan M. Genetic diversity analysis of mulberry silkworm (Bombyx mori) strains using RAPD markers. J Anim Plant Sci. 2017;27:575–81.

    CAS  Google Scholar 

  26. Balakrishnan V, Latha MR, Ravindran KC, Robinson JP. Clonal propagation of Morus alba L. through nodal and axillary bud explants. Bot Res Int. 2009;2:42–9.

    CAS  Google Scholar 

  27. Banerjee R, Chattopadhyay S, Saha AK. Genetic diversity and relationship of mulberry genotypes revealed by RAPD and ISSR markers. J Crop Improv. 2016;30:478–92.

    CAS  Google Scholar 

  28. Bhardwaj N, Rajkhowa R, Wang X, Devi D. Milled non-mulberry silk fibroin microparticles as biomaterial for biomedical applications. Int J Biol Macromol. 2015;81:31–40.

    CAS  PubMed  Google Scholar 

  29. Bhardwaj N, Singh YP, Devi D, Kandimalla R, Kotoky J, Mandal BB. Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering. J Mater Chem B. 2016;4:3670–84.

    CAS  PubMed  Google Scholar 

  30. Bhatnagar S, Khurana P. Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K-2: a time phased screening strategy. Plant Cell Rep. 2003;21:669–75.

    CAS  PubMed  Google Scholar 

  31. Bhatnagar S, Kapur A, Khurana P. TDZ mediated differentiation in commercially valuable Indian mulberry, Morus indica cultivars K2 and DD. Plant Biotechnol. 2001;18:61–5.

    CAS  Google Scholar 

  32. Bhatnagar S, Kapur A, Khurana P. Evaluation of parameters for high efficiency gene transfer via particle bombardment in Indian mulberry. Indian J Exp Biol. 2002;40:1387–93.

    CAS  PubMed  Google Scholar 

  33. Bhattacharya E, Ranade SA. Molecular distinction amongst varieties of Mulberry using RAPD and DAMD profiles. BMC Plant Biol. 2001;1:1–8.

    Google Scholar 

  34. Bhau BS, Wakhlu AA. Effect of genotype, explant type and growth regulators on organogenesis in Morus alba. Plant Cell Tiss Organ Cult. 2001;66:25–9.

    CAS  Google Scholar 

  35. Bhau BS, Wakhlu AK. Rapid micropropagation of five cultivars of mulberry. Biol Plant. 2003;46:349–55.

    Google Scholar 

  36. Biondi S, Thorpe TA. Clonal propagation of forest tree species. In: Rao A, editor. Proceedings of COSTED symposium-“Tissue culture of economically important plants”, COSTED and Asian Network of Biological Sciences, Singapore; 1982. p. 197–204.

  37. Buhroo ZI, Bhat MA, Kamili AS, Ganai NA, Bali GK, Khan IL, Aziz A. Trends in development and utilization of sericulture resources for diversification and value addition. J Entomol Zool Stud. 2018;6:601–15.

    Google Scholar 

  38. Chakraborty S, Muthulakshmi M, Vardhini D, Jayprakash P, Naagraju J, Arunkumar KP. Genetic analysis of Indian tasar silkmoth (Antheraea mylitta) populations. Sci Rep. 2015;5:15728. https://doi.org/10.1038/srep15728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chandrakanth N, Moorthy SM, Dayananda AP, Ashwath SK, Kumar V, Bindroo BB. Evaluation of genetic diversity in silkworm (Bombyx mori L.) strains using microsatellite markers. Int J Biotechnol Allied Fields. 2014;2:73–93.

    CAS  Google Scholar 

  40. Chatterjee SN, Pradeep AR. Molecular markers (RAPD) associated with growth, yield, and origin of the silkworm, Bombyx mori L, in India. Russ J Genet. 2003;39:1365–77.

    CAS  Google Scholar 

  41. Chatterjee SN, Vijayan K, Roy GC, Nair CV. ISSR profiling of genetic variability in the ecotypes of Antheraea mylitta Drury, the tropical tasar silkworm. Russ J Genet. 2004;40:152–9.

    CAS  Google Scholar 

  42. Chatterjee SN, Nagaraja GM, Srivastava PP, Naik G. Morphological and molecular variation of Morus laevigata in India. Genetica. 2004;39:1612–24.

    Google Scholar 

  43. Chattopadhyay S, Doss SG, Halder S, Ali AK, Bajpai AK. Comparative micropropagation efficiency of diploid and triploid mulberry (Morus alba cv. S1) from axillary bud explants. Afr J Biotechnol. 2011;10:18153–9.

    Google Scholar 

  44. Checker VG, Chhibbar AK, Khurana P. Stress-inducible expression of barley Hva1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress. Transgenic Res. 2012;21:939–57.

    CAS  PubMed  Google Scholar 

  45. Chikkaswamy BK, Paramanik RC. Molecular distinction of silkworm varieties using RAPD molecular marker. Int J Curr Res Acad Rev. 2015;3:199–208.

    CAS  Google Scholar 

  46. Chikkaswamy BK, Prasad MP. Evaluation of genetic diversity and relationships in mulberry varieties using RAPD and ISSR molecular markers. Int J Mol Biol. 2012;3:2–7.

    Google Scholar 

  47. Chikkaswamy BK, Paramanik RC, Debnath A, Sadana MS. Evaluation of genetic diversity in mulberry varieties using molecular markers. Nat Sci. 2012;10:45–60.

    Google Scholar 

  48. Chitra DSV, Padmaja G. Seasonal influence on axillary bud sprouting and micropropagation of elite cultivars of mulberry. Sci Hortic. 2002;92:55–68.

    Google Scholar 

  49. Chitra DSV, Padmaja G. Shoot regeneration via direct organogenesis from in vitro derived leaves of mulberry using thidiazuron and 6-benzylaminopurine. Sci Hortic. 2005;106:593–602.

    CAS  Google Scholar 

  50. Chitra DSV, Chinthapalli B, Padmaja G. Efficient regeneration system for genetic transformation of mulberry (Morus indica L. Cultivar S-36) using in vitro derived shoot meristems. Am J Plant Sci. 2014;5:1–6.

    Google Scholar 

  51. Choudhary R, Chaudhury R, Malik SK, Kumar S, Pal D. Genetic stability of mulberry germplasm after cryopreservation by twostep freezing technique. Afr J Biotechnol. 2013;12:5983–93.

    CAS  Google Scholar 

  52. Dai F, Zhao X, Tang C, Wang Z, Kuang Z, Li Z, Huang J, Luo G. Identification and validation of reference genes for qRT-PCR analysis in mulberry (Morus alba L.). PLoS ONE. 2018;13:e0194129.

    PubMed  PubMed Central  Google Scholar 

  53. Dai W, Qi J, Chen H, Zhang Z, Shang R, Zhang Y, Tang S, Shen Z. Rapid and sensitive detection of Nosema bombycis using loop-mediated isothermal amplification and colorimetric nanogold. Sci Asia. 2019;45:268–74.

    CAS  Google Scholar 

  54. Dalirsefat SB, Mirhoseini SZ. Assessing genetic diversity in Iranian native silkworm (Bombyx mori L.) strains and Japanese commercial lines using AFLP markers. Iran J Biotechnol. 2007;5:25–33.

    CAS  Google Scholar 

  55. Das M. Screening and genetic manipulation of mulberry for abiotic stress tolerance. PhD thesis, Delhi University. 2009.

  56. Das BC, Krishnaswami S. Some observations on inter-specific hybridization in mulberry. Indian J Seric. 1965;4:1–4.

    Google Scholar 

  57. Das BC. Mulberry taxonomy, cytogenetics and breeding. National seminar on silk research and development, Bangalore, India, 10–13 March 1983.

  58. Das M, Chauhan H, Chhibbar A, Rizwanul Haq QM, Khurana P. High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Res. 2011;20:231–46.

    CAS  PubMed  Google Scholar 

  59. Das M, Tetoriya M, Haq QMR, Khurana P. Screening and expression analysis of hal3a, dehydrin and nhx1 in ten genotypes of mulberry for abiotic stress tolerance. Sericologia. 2013;53:1–10.

    Google Scholar 

  60. Datta RK. Guidelines for bivoltine rearing. Central Silk Board, Bangalore, India;1992. p. 24.

  61. Deori M, Devi D, Devi R. Nutrient composition and antioxidant activities of Muga and Eri silkworm pupae. Int J Sci Nat. 2014;5:636–40.

    CAS  Google Scholar 

  62. Deori M, Boruah DC, Devi D, Devi R. Antioxidant and antigenotoxic effects of pupae of the muga silkworm Antheraea assamensis. Food Biosci. 2014;5:108–14.

    CAS  Google Scholar 

  63. Desai S, Desai P, Mankad M, Patel A, Patil G, Narayanan S. Development of micropropagation protocol for Morus nigra L. (black mulberry) through axillary buds. Int J Chem Stud. 2018;6:585–9.

    Google Scholar 

  64. Doira H, Fujii H, Kawaguchi Y, Kihara H, Banno Y. Genetical stocks and mutations of Bombyx mori: important genetic resources. Inst Genet Resour. Fac Agr Kyushu Univ Fukuoka. 1992. p. 74.

  65. Du D, Kato T, Nurun Nabi AHM, Suzuki F, Park EY. Expression of functional human (pro)renin receptor in silkworm (Bombyx mori) larvae using BmMNPV bacmid. Biotechnol Appl Biochem. 2008;49:195–202.

    CAS  PubMed  Google Scholar 

  66. Du D, Kato T, Suzuki F, Park EY. Binding affinity of full length and extracellular domains of recombinant human (Pro)renin receptor to human renin when expressed in the fat body and hemolymph of silkworm larvae. J Biosci Bioeng. 2009;108:304–9.

    CAS  PubMed  Google Scholar 

  67. Duarte WN, Zanello CA, Cardoso JC. Efficient and easy micropropagation of Morus nigra and the influence of natural light on its acclimatization. Adv Hortic Sci. 2019;33:433–9.

    Google Scholar 

  68. Eroglu D, Arica SC. Molecular genetic analysis of three Turkish local silkworm breeds (Bursa Beyazı, Alaca and Hatay Sarısı) by RAPD-PCR method. J Appl Biol Sci. 2009;3:17–20.

    Google Scholar 

  69. Esvaran VG, Gupta T, Mohanasundaram A, Ponnuvel KM. Development of isothermal amplification assay for detection of Nosema bombycis infection in silkworm Bombyx mori targeting polar tube protein 1 gene. Invertebr Surviv. 2018;15:352–61.

    Google Scholar 

  70. Ezeonu CS, Richard Tagbo R, Anike EN, Obinna A, Oje A, Ikechukwu NEO. Biotechnological tools for environmental sustainability: prospects and challenges for environments in Nigeria—a standard review. Biotechnol Res Int. 2012. https://doi.org/10.1155/2012/450802.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Fan W, Liu C, Cao B, Qin M, Long D, Xiang Z, Zhao A. Genome-wide identification and characterization of four gene families putatively involved in cadmium uptake, translocation and sequestration in mulberry. Front Plant Sci. 2018;9:879.

    PubMed  PubMed Central  Google Scholar 

  72. Fang S-M, Zhou Q-Z, Yu Q-Y, Zhang Z. Genetic and genomic analysis for cocoon yield traits in silkworm. Sci Rep. 2020;10:5682. https://doi.org/10.1038/s41598-020-62507-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Feng LC, Guangwei Y, Maode Y, Yifu K, Chenjun J, Zhonghuai Y. Studies on the genetic identities and relationships of mulberry cultivated species (Morus L.) by a random amplified polymorphic DNA assay. Acta Sericol Sin. 1996;22:135–9.

    CAS  Google Scholar 

  74. Fukuda T, Suto M, Higuchi Y. Silkworm raising on artificial food. Nature. 1960;187:669–70.

    Google Scholar 

  75. Furdui E, Mărghitaş LA, Dezmirean D, Paşca I, Coroian C. RAPD analysis of romanian silkworm genetic biodiversity (races X hybrids). Bull UASVM Anim Sci Biotechnol. 2009;66:430–4.

    CAS  Google Scholar 

  76. Furdui EM, Marghita LA, Dezmirean D, Pop IF, Coroian C, Pasca I. Genetic phylogeny and diversity of some Romanian silkworms based on RAPD technique. J Anim Sci Biotechnol. 2011;44:204–8.

    Google Scholar 

  77. Gogoi G, Borua PK, Al-Khayri JM. Improved micropropagation and in vitro fruiting of Morus indica L. (K-2 cultivar). J Genet Eng Biotechnol. 2017;15:249–56.

    PubMed  PubMed Central  Google Scholar 

  78. Guruprasad Krishnan RR, Dandin SB, Naik VG. Groupwise sampling: a strategy to sample core entries from RAPD marker data with application to mulberry. Trees. 2014;28:723–31.

    Google Scholar 

  79. Haghighi MT, Jagadeesh Kumar TS. Genetic divergence and allelic-specificity in relation to expression of voltinism in silkworm using ISSR and RAPD fingerprinting. Russ J Genet. 2017;53:267–74.

    CAS  Google Scholar 

  80. Hawramee AOK, Aziz RR, Hassan DA. Propagation of white mulberry Morus alba L. fruitless cultivar using different cutting times and IBA. IOP Conf Ser Earth Environ Sci. 2019;388:012069.

    Google Scholar 

  81. Hazra S, Nandi S, Naskar D, Guha R, Chowdhury S, Pradhan N, Kundu SC, Konar A. Non-mulberry silk fibroin biomaterial for corneal regeneration. Sci Rep. 2016;6:21840.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. He N, Zhang C, Qi X, Zhao S, Tao Y, Yang G, Lee TH, Wang X, Cai Q, Li D, Lu M, Liao S, Luo G, He R, Tan X, Xu Y, Li T, Zhao A, Jia L, Fu Q, Zeng Q, Gao C, Ma B, Liang J, Wang X, Shang J, Song P, Wu H, Fan L, Wang Q, Shuai Q, Zhu J, Wei C, Zhu-Salzman K, Jin D, Wang J, Liu T, Yu M, Tang C, Wang Z, Dai F, Chen J, Liu Y, Zhao S, Lin T, Zhang S, Wang J, Wang J, Yang H, Yang G, Wang J, Paterson AH, Xia Q, Ji D, Xiang Z. Draft genome sequence of the mulberry tree Morus notabilis. Nat Commun. 2013;4:2445. https://doi.org/10.1038/ncomms3445.

    Article  CAS  PubMed  Google Scholar 

  83. Hiroshi S, Hiro-aki Y. Low-cost artificial diets for polyphagous silkworms. Jpn Agric Res Q. 1994;28:262–7.

    Google Scholar 

  84. Hou CX, Li MW, Zhang YH, Qian HY, Sun PJ, Xu AY, Miao XX, Guo QH, Xiang H, Huang YP. Analysis of SSR fingerprints in introduced silkworm germplasm resources. Agric Sci China. 2007;6:620–7.

    CAS  Google Scholar 

  85. Huang R-Z, Yan X-P, Li J, Zhang X-W. AFLP fingerprint analysis for 10 mulberry cultivars in Hunan province. Sci Seric. 2009;35:837–41.

    CAS  Google Scholar 

  86. Ipek M, Pirlak L, Kafkas S. Molecular characterization of mulberry (Morus spp.) genotypes via RAPD and ISSR. J Sci Food Agric. 2012;92:1633–7.

    CAS  PubMed  Google Scholar 

  87. Ito T, Tanaka M. Rearing of the silkworm on an artificial diet and the segregation of pentamolters. J Seric Sci. 1960;29:191–6.

    Google Scholar 

  88. Ji T, Shuang F, Aizhen Y, Ning D, Yueping L. the primary study of mulberry rapid propagation by culture of side bud tissue. Chin Agric Sci Bull. 2008; Article No. 47.

  89. Jiang L, Xia QY. The progress and future of enhancing antiviral capacity by transgenic technology in the silkworm Bombyx mori. Insect Biochem Mol Biol. 2014;48:1–7.

    CAS  PubMed  Google Scholar 

  90. Joshi RP, Raja IA. PCR based conformation of viral flacherie in the silkworm, Bombyx mori. Biosci Biotechnol Res Commun. 2015;8:189–92.

    Google Scholar 

  91. Kadono-Okuda K, Kosegawa E, Mase K, Hara W. Linkage analysis of maternal EST cDNA clones covering all twenty-eight chromosomes in the silkworm, Bombyx mori. Insect Mol Biol. 2002;11:443–51.

    CAS  PubMed  Google Scholar 

  92. Kafkas S, Ozgen M, Dogan Y, Ozgen B, Ercisli S, Serce S. Molecular characterization of mulberry accessions in Turkey by AFLP markers. J Am Soc Hortic Sci. 2008;133:593–7.

    Google Scholar 

  93. Kala P, Zargar SM, Bali RK, Gupta N, Salgotra RK, Koul A. Assessment of genetic diversity in mulberry using morphological and molecular markers. Electron J Plant Breed. 2016;7:94–103.

    Google Scholar 

  94. Kalpana D, Choi SH, Choi TK, Senthil K, Lee YS. Assessment of genetic diversity among varieties of mulberry using RAPD and ISSR fingerprinting. Sci Hortic. 2012;134:79–87.

    CAS  Google Scholar 

  95. Kampliw S, Monthatong M. Loop mediated isothermal amplification (LAMP) for Nosema bombycis diagnosis by small subunit ribosomal RNA (SSU rRNA) gene. Indian J Agric Res. 2019;53:447–52.

    Google Scholar 

  96. Kapur A, Bhatnagar S, Khurana P. Efficient regeneration from mature leaf explants of Indian mulberry via organogenesis. Sericologia. 2001;41:207–14.

    Google Scholar 

  97. Kar PK, Vijayan K, Mohandas TK, Nair CV, Saratchandra B, Thangavelu K. Genetic variability and genetic structure of wild and semi-domestic populations of tasar silkworm (Antheraea mylitta) ecoraces Daba as revealed through ISSR markers. Genetica. 2005;125:173–83.

    CAS  PubMed  Google Scholar 

  98. Kar P, Srivastava PP, Awasthi AK, Urs SR. Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet Genomes. 2008;4:75–83.

    Google Scholar 

  99. Kar S, Talukdar S, Pal S, Nayak S, Paranjape P, Kundu S. Silk gland fibroin from Indian muga silkworm Antheraea assama as potential biomaterial. Tissue Eng Regen Med. 2013;10:200–10.

    CAS  Google Scholar 

  100. Kari K, David M. Expression of human erythropoietin protein using a Baculovirus. Int J Recent Sci Res. 2015;6:3515–9.

    Google Scholar 

  101. Karnosky DF. Potential for forest tree improvement via tissue culture. Bioscience. 1981;31:114–20.

    Google Scholar 

  102. Kashyap S, Sharma S. In vitro selection of salt tolerant Morus alba and its field performance with bioinoculants. Hortic Sci. 2006;33:77–86.

    Google Scholar 

  103. Kavyashree R, Gayatri MC, Revanasiddaiah HM. A repeatable protocol for the production of gynogenic haploid plants in mulberry. Sericologia. 2001;41:517–21.

    Google Scholar 

  104. Khurana P. Mulberry genomics for crop improvement. In: Saratchandra B, Singh RN, Vijayan K, editors. Workshop on recent advances in sericulture re-search. Bangalore: Central Silk Board; 2010. p. 35.

    Google Scholar 

  105. Khurana P, Checker VG. The advent of genomics in mulberry and perspectives for productivity enhancement. Plant Cell Rep. 2011;30:825–38.

    CAS  PubMed  Google Scholar 

  106. Khyade VB, Tyagi BK. Detection of grasserie virus, BmNPV in the fifth instar larvae of silkworm, Bombyx mori (L) (Race: PM x CSR2) through polymerase chain reaction. Int J Curr Microbiol Appl Sci. 2017;6:13–23.

    CAS  Google Scholar 

  107. Kim KY, Kang PD, Lee KG, Oh HK, Kim MJ, Kim K, Park SW, Lee SJ, Jin BR, Kim I. Microsatellite analysis of the silkworm strains (Bombyx mori): high variability and potential markers for strain identification. Genes Genom. 2010;32:532–43.

    CAS  Google Scholar 

  108. Kojima K, Kuwana Y, Sezutsu H, Kobayashi I, Uchino K, Tamura T, Tamada Y. A new method for the modification of fibroin heavy chain protein in the transgenic silkworm. Biosci Biotechnol Biochem. 2007;71:2943–51.

    CAS  PubMed  Google Scholar 

  109. Krishnan RR, Naik VG, Ramesh SR, Qadri SMH. Microsatellite marker analysis reveals the events of the introduction and spread of cultivated mulberry in the Indian subcontinent. Plant Genet Resour. 2013;12:129–39.

    Google Scholar 

  110. Kumar D, Pandey JP, Sinha AK, Salaj S, Mishra PK, Prasad BC. Evaluation of novel tasar silkworm feed for Antheraea mylitta: its impact on rearing, cocoon trait and biomolecular profile. Am J Biochem Mol Biol. 2013;3:167–74.

    CAS  Google Scholar 

  111. Lal S, Gulyani V, Khurana P. Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res. 2008;17:651–63.

    CAS  PubMed  Google Scholar 

  112. Lalitha N, Kih S, Banerjee R, Chattopadhya S, Saha AK, Bindroo BB. High frequency multiple shoot induction and in vitro regeneration of mulberry (Morus indica L. cv. S-1635). Int J Adv Res. 2013;1:22–6.

    Google Scholar 

  113. Li M, Shen L, Xu A, Miao X, Hou C, Sun P, Zhang Y, Huang Y. Genetic diversity among silkworm (Bombyx mori L., Lep., Bombycidae) germplasms revealed by microsatellites. Genome. 2005;48:802–10.

    CAS  PubMed  Google Scholar 

  114. Li M, Hou C, Miao X, Xu A, Huang Y. Analyzing genetic relationships in Bombyx mori using intersimple sequence repeat amplification. Mol Entomol. 2007;100:202–2008.

    CAS  Google Scholar 

  115. Li Z, Yi Y, Yin X, Zhang Z, Liu J. Expression of foot-and mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine. PLoS ONE. 2008;3:e2273.

    PubMed  PubMed Central  Google Scholar 

  116. Li R, Liu L, Dominic K, Wang T, Fan T, Hu F, Wang Y, Zhang L, Li L, Zhao W. Mulberry (Morus alba) MmSK gene enhances tolerance to drought stress in transgenic mulberry. Plant Physiol Biochem. 2018;132:603–11.

    CAS  PubMed  Google Scholar 

  117. Lin Z, Weiguo Z, Junbai C, Yong H, Xing JS, Liu L, Qiang S. Analysis of genetic diversity and construction of core collection of local mulberry varieties from Shanxi Province based on ISSR marker. Afr J Biotechnol. 2011;10:7756–65.

    Google Scholar 

  118. Liu C, Li J, Zhu P, Yu J, Hou J, Wang C, Long D, Yu M, Zhao A. Mulberry EIL3 confers salt and drought tolerances and modulates ethylene biosynthetic gene expression. Peer J. 2019;7:e6391.

    PubMed  PubMed Central  Google Scholar 

  119. Lizuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y, Miyawaki Y, Hirabayashi J, Tomita M. Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS. 2009;276:5806–20.

    Google Scholar 

  120. Longvah T, Mangthya K, Ramulu P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011;128:400–3.

    CAS  PubMed  Google Scholar 

  121. Longvah T, Manghtya K, Qadri SSYH. Eri silkworm: a source of edible oil with a high content of α-linolenic acid and of significant nutritional value. J Sci Food Agric. 2012;92:1988–93.

    CAS  PubMed  Google Scholar 

  122. Lou CF, Zhang YZ, Zhou JM. Polymorphisms of genomic DNA in parents and their resulting hybrids in mulberry (Morus). Sericologia. 1998;38:437–45.

    Google Scholar 

  123. Lu M-C. Micropropagation of Morus latifolia poilet using axillary buds from mature trees. Sci Hortic. 2002;96:329–41.

    CAS  Google Scholar 

  124. Luckow VA, Lee SC, Barry GF, Olins PO. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol. 1993;67:4566–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E. Development of new technologies in plant breeding. Nat Biotechnol. 2012;30:231–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ma X, Cao C, Li J, Zhu H. Novel prosthesis using silk fibroin for small calibre vascular. Key Eng Mater. 2005;288–289:461–4.

    Google Scholar 

  127. Ma X, Cao C, Zhu H. The biocompatibility of silk fibroin films containing sulfonated silk fibroin. J Biomed Mater. 2006;78:89–96.

    Google Scholar 

  128. Maeda S, Kawai T, Obinata M, Fujiwara H, Horiuchi T, Saeki Y, Sato Y, Furusawa M. Production of human α-interferon in silkworm using a baculovirus vector. Nature. 1985;315:592–4.

    CAS  PubMed  Google Scholar 

  129. Mahendran M, Acharya C, Dash R, Ghosh AK, Kundu SC. Repetitive DNA in tropical tasar silkworm Antheraea mylitta. Gene. 2006;370:51–7.

    CAS  PubMed  Google Scholar 

  130. Mandal BB, Kundu SC. Non-mulberry silk gland fibroin protein 3D scaffold for enhanced differentiation of human mesenchymal stem cells into osteocytes. Acta Biomater. 2009;5:2579–90.

    CAS  PubMed  Google Scholar 

  131. Martinex-Zubiaur Y, Abreu MP, Hernández MCP, Sihler W, Falcao R, Ribeiro BM, de Souza ML. First record of a Bombyx mori nucleopolyhedrovirus (Bmnpv) isolate from cuba. J Curr Res. 2016;8:35766–70.

    Google Scholar 

  132. Masig CW, Ndabagye J, Barugahara I, Jaggwe R, Sempiri G, Nagamb MN, Lukoye D, Walimbwa E, Mushikoma D, Nabutsale A, Mutenyo M, Ekoot B, Nabende P, Amanya L, Mugabi R, Paul S, Kaslime G, Sabunyo N, Aine RS, Mugisha RR, Mousavi SMA, Ngoka B, Mugisha D, Nemeye P, Ndemere P. Country report, The 6th Asia-Pacific congress of sericulture and insect biotechnology. Mysore, India, 2–4th March 2019.

  133. Masthan K, Rajkumar T, Narasimha Murthy CV. Studies on fortification of mulberry leaves with probiotics for improvement of silk quality. Int J Biotechnol Biochem. 2017;13:73–80.

    Google Scholar 

  134. Miao XX, Xub SJ, Li MH, Li MW, Huang JH, Dai FY, Marino SW, Mills DR, Zeng P, Mita K, Jia SH, Zhang Y, Liu WB, Xiang H, Guo QH, Xu AY, Kong XY, Lin HX, Shi YZ, Lu G, Zhang X, Huang W, Yasukochi Y, Sugasaki T, Shimada T, Nagaraju J, Xiang ZH, Wang SY, Goldsmith MR, Lu C, Zhao GP, Huang YP. Simple sequence repeat-based consensus linkage map of Bombyx mori. Proc Natl Acad Sci USA. 2005;102:16303–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Minagawa S, Nakaso Y, Tomita M, Igarashi T, Miura Y, Yasuda H, Sekiguchi S. Novel recombinant feline interferon carrying N-glycans with reduced allergy risk produced by a transgenic silkworm system. BMC Vet Res. 2018;14:260.

    PubMed  PubMed Central  Google Scholar 

  136. Ministry of Health, Labour and Welfare, Japan. Dietary reference intakes for Japanese. Daiichi-shup-pan. Tokyo (in Japanese); 2010.

  137. Mirhoseini SZ, Rabiei B, Potki P, Dalirsefat SB. Linkage map construction for silkworm (Bombyx mori L.) based on amplified fragment length polymorphism markers. Iran J Biotechnol. 2009;7:28–36.

    CAS  Google Scholar 

  138. Mirhoseini SZ, Rabiei B, Potki P, Dalirsefat SB. Amplified fragment length polymorphism mapping of quantitative trait loci for economically important traits in the silkworm, Bombyx mori. J Insect Sci. 2010;10:Article 153.

    PubMed  Google Scholar 

  139. Mishra S. Genetic analysis of traits controlling water use efficiency and rooting in mulberry (Morus spp.) by molecular markers. Ph.D. Thesis, University of Mysore, Mysuru, India. 2014. http://hdl.handle.net/10603/15951.

  140. Mishra N, Hazarika NC, Narain K, Mahanta J. Nutritive value of non mulberry and mulberry silkworm pupae and consumption pattern in Assam. India J Nutr Res. 2003;23:1303–11.

    CAS  Google Scholar 

  141. Mishra S, Naik VG, Sukumar M, Pinto MV, Sheshashayee MS, Dandin SB. Genetic analysis of parental genotypes for mapping of water use efficiency and root traits in mulberry. Indian J Genet Plant Breed. 2013;73:405–10.

    Google Scholar 

  142. Mita K, Morimyo M, Okano K, Koike Y, Nohata J, Kawasaki H, Kadono-Okuda K, Yamamoto K, Suzuki MG, Shimada T, Goldsmith MR, Maeda S. The construction of an EST database for Bombyx mori and its application. Proc Natl Acad Sci USA. 2003;100:14121–6.

    PubMed  PubMed Central  Google Scholar 

  143. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T. The genome sequence of silkworm, Bombyx mori. DNA Res. 2004;11:27–35.

    CAS  PubMed  Google Scholar 

  144. Miyashita V. A report on mulberry cultivation and training methods suitable to bivoltine rearing in Karnataka. Central Silk Board, Bangalore, India, 1986.

  145. Mondal M, Tandon B, Radhakrishna PM. SeriNutrid-a balanced nutrient diet for silkworm (Bombyx mori L.) chawki rearing. Int J Adv Res Ideas Innov Technol. 2018;4:42–7.

    Google Scholar 

  146. Moorthy SM, Chandrakanth N, Ashwath SK, Kumar V, Bindroo BB. Genetic diversity analysis using RAPD marker in some silkworm breeds of Bombyx mori L. Ann Biol Res. 2013;4:82–8.

    Google Scholar 

  147. Motohashi T, Shimojima T, Fukagawa T, Maenaka K, Park EY. Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem Biophys Res Commun. 2005;326:564–9.

    CAS  PubMed  Google Scholar 

  148. Muhonja L, Yamanouchi H, Yang CC, Kuwazaki S, Yokoi K, Kameda T, Sezutsu H, Jouraku A. Genome- wide SNP marker discovery and phylogenetic analysis of mulberry varieties using double digest restriction site associated DNA sequencing. Gene. 2020;726:144–62.

    Google Scholar 

  149. Muneta Y, Nagaya H, Minagawa Y, Enomoto C, Matsumoto S, Mori Y. Expression and one-step purification of bovine interleukin-21 (IL-21) in silkworm using a hybrid baculovirus expression system. Biotechnol Lett. 2004;26:1453–8.

    CAS  PubMed  Google Scholar 

  150. Musataka SG. Increased applicability of genetically modified silkworms leads to innovations in sericulture and sericology. Country report. In: The 6th Asia-Pacific congress of sericulture and insect biotechnology, Mysore, India, 2–4th March 2019.

  151. Nagaraja GM, Mahesh G, Satish V, Madhu M, Muthulakshmi M, Nagaraju J. Genetic mapping of Z chromosome and identification of W chromosome-specific markers in the silkworm, Bombyx mori. Heredity. 2005;95:148–57.

    CAS  PubMed  Google Scholar 

  152. Nagaraju J. Recent advances in molecular genetics of the silk moth, Bombyx mori. Curr Sci. 1995;78:151–61.

    Google Scholar 

  153. Nagaraju J, Damodar KR, Nagaraja GM, Sethuraman BN. Comparison of multilocus RFLPs and PCR-based marker systems for genetic analysis of the silkworm, Bombyx mori L. Heredity. 2001;36:588–97.

    Google Scholar 

  154. Nagaya H, Kanaya T, Kaki H, Tobita Y, Takahashi M, Takahashi H, Yokomizo Y, Inumaru S. Establishment of a large-scale purification procedure for purified recombinant bovine interferon-τ produced by a silkworm-baculovirus gene expression system. J Vet Med Sci. 2004;66:1395–401.

    CAS  PubMed  Google Scholar 

  155. Naik VG, Dandin SB. Identification of duplicate collections in the mulberry (Morus spp.) germplasm using RAPD analysis. Indian J Genet. 2006;66:287–92.

    CAS  Google Scholar 

  156. Naik VG, Sarkar A, Sathyanarayana N. DNA finger printing of Mysore local and V-1 cultivars of mulberry (Morus spp.) with RAPD markers. Indian J Genet. 2002;62:193–6.

    CAS  Google Scholar 

  157. Naik VG, Subbulakshmi N, Pinto MV, Mishra S, Qadri SMH. Assessment of genetic diversity among mulberry collections from South India using phenotypic and RAPD markers. Indian J Seric. 2013;52:34–43.

    Google Scholar 

  158. Naik VG, Thumilan B, Sarkar A, Dandin SB, Pinto MV, Sivaprasad V. Development of genetic linkage map of mulberry using molecular markers and identification of QTLs linked to yield and yield contributing traits. Sericologia. 2014;54:221–9.

    Google Scholar 

  159. Naik VG, Dandin SB, Tikader A, Pinto MV. Molecular diversity of wild mulberry (Morus spp.) of Indian subcontinent. Indian J Biotechnol. 2015;14:334–43.

    CAS  Google Scholar 

  160. Nair JS, Kumar SN, Nair KS. Improvement and Stabilization of feeding response to artificial diet in bivoltine pure stains of silkworm, Bombyx mori L. through directional selection. J Seric Technol. 2010;1:41–6.

    Google Scholar 

  161. Nataraju B, Sivaprasad V, Datta RK, Gupta SK, Shamim M. Colloidal textile dye-based dipstick immunoassay for the detection of nuclear polyhedrosis virus (BmNPV) of silkworm, Bombyx mori L. J Invertebr Pathol. 1994;63:135–9.

    Google Scholar 

  162. Nguu EK, Kadono-Okuda K, Mase K, Kosegawa E, Hara W. Molecular linkage map for the silkworm, Bombyx mori, based on restriction fragment length polymorphism of cDNA clones. J Insect Biotechnol Sericol. 2005;74:5–13.

    CAS  Google Scholar 

  163. Oka S, Tewary PK. Induction of hairy roots from hypocotyls of mulberry (Morus indica L.) by Japanese wild strains of Agrobacterium rhizogenes. J Seric Sci Jpn. 2000;69:13–9.

    CAS  Google Scholar 

  164. Opabode JT, Adebooye OC. Application of biotechnology for the improvement of Nigerian indigenous leaf vegetables. Afr J Biotechnol. 2005;4:138–42.

    Google Scholar 

  165. Orhan E, Ercisli S, Yildirim N, Agar G. Genetic variations among mulberry genotypes (Morus alba) as revealed by random amplified polymorphic DNA (RAPD) markers. Plant Syst Evol. 2007;265:251–8.

    CAS  Google Scholar 

  166. Orhan E, Akin M, Eyduran SP, Ercisli S. Molecular characterization of mulberry genotypes and species in Turkey. Not Bot Hortic Agrobot Cluj Napoca. 2020;48:557–79.

    Google Scholar 

  167. Ozrenk K, Sensoy RIG, Erdinc C, Guleryuz M, Aykanat A. Molecular characterization of mulberry germplasm from Eastern Anatolia. Afr J Biotechnol. 2010;9:1–6.

    CAS  Google Scholar 

  168. Padamwar MN, Pawar AP, Daithankar AV, Mahadik KR. Silk sericin as amoisturizer: an in vivo study. J Cosmet Dermatol. 2005;4:250–7.

    PubMed  Google Scholar 

  169. Patra C, Talukdar S, Novoyatleva T, Velagala SR, Mühlfeld C, Kundu B, Kundu SC, Engel FB. Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials. 2012;33:2673–80.

    CAS  PubMed  Google Scholar 

  170. Pinto MV, Naik VG, Qadri SMH. Genetic variability studies in mulberry using microsatellite markers. J Sericult Technol. 2012;3:38–43.

    Google Scholar 

  171. Prasad MD, Muthulakshmi M, Madhu M, Archak S, Mita K, Nagaraju J. Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species. Genetics. 2005;169:197–214.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Promboon A, Shimada T, Fujiwara F, Kobayashi M. Linkage map of random amplified polymorphic DNAs (RAPDs) in the silkworm Bombyx mori. Genet Res. 1995;66:1–7.

    CAS  Google Scholar 

  173. Qian Q, You Z, Ye L, Che J, Wang Y, Wang S, Zhong B. High-efficiency production of human serum albumin in the posterior silk glands of transgenic silkworms, Bombyx mori L. PLoS ONE. 2018;13:e0191507.

    PubMed  PubMed Central  Google Scholar 

  174. Qiana H, Lia G, Zhaoa G, Liua M, Suna P, Xua A. Fingerprint analysis of Bombyx mori local variety resources based on SSR markers. Sci Asia. 2019;45:342–9.

    Google Scholar 

  175. Qiuxia D, Yang L, Kotoka DK, Weiguo Z. Molecular cloning and abiotic stress expression analysis of gtpase era gene in mulberry (Morus Alba L.). J Agric Res. 2020;5:000239.

    Google Scholar 

  176. Radjabi R, Sarafrazi A, Tarang A, Kamali K, Tirgari S. Intraspecific biodiversity of Iranian local races of silkworm Bombyx mori by ISSR (inter-simple sequence repeat) molecular marker. World J Zool. 2012;7:17–22.

    Google Scholar 

  177. Raghunath MK, Lal S, Khurana P. In vitro plant regeneration from different explants of elite mulberry (Morus sp.) genotypes. Bangladesh J Seric. 2009;2:31–9.

    Google Scholar 

  178. Raghunath MK, Nataraj KN, Meghana JS, Sanjeevan RS, Rajan MV, Qadri SMH. In vitro plant regeneration of Morus indica L. cv. V-1 using leaf explants. Am J Plant Sci. 2013;4:2001–5.

    Google Scholar 

  179. Ramesha C, Kumari SS, Anuradha CM, Lakshmi H, Kumar CS. Nutrigenomic analysis of mulberry silkworm (Bombyx mori L.) strains using polymerase chain reaction-simple sequence repeats (PCR-SSR). Int J Biotechnol Mol Bio Res. 2010;1:92–100.

    Google Scholar 

  180. Rangacharyulu PV, Giri SS, Paul BN, Yashoda KP, Rao RJ, Mahendrakar NS, Mohanty SN, Mukhopadhyay PK. Utilization of fermented silkworm pupae silage in feed for carps. Bioresour Technol. 2003;86:29–32.

    CAS  PubMed  Google Scholar 

  181. Rao AP. Some salient features of Andhra local ecoraces of Antheraea mylitta Drury in relation to its conservation and multiplication. Int J Wild Silkmoth Silk. 2000;5:356–8.

    Google Scholar 

  182. Rao P, Nuthan D, Krishna KS. A protocol for in vitro regeneration of rainfed mulberry varieties through callus phase. Eur J Biol Sci. 2010;2:80–6.

    Google Scholar 

  183. Roh DH, Kang SY, Kim JY, Kwon YB, Hae YK, Lee KG, Park YH, Baek RM, Heo CY, Choe J, Lee JH. Wound healing effect of silk fibroin/alginate-blended sponge in full thickness skin defect of rat. J Mater Sci Mater Med. 2006;17:547–52.

    CAS  PubMed  Google Scholar 

  184. Rohela GK, Shabnam AA, Shukla P, Kamili AN, Ghosh MK. Rapid one step protocol for the in vitro micropropagation of Morus multicaulis Var. Goshoerami, an elite mulberry variety of temperate region. J Exp Biol Agric Sci. 2018;6:936–46.

    CAS  Google Scholar 

  185. Rohela GK, Jogam P, Mir MY, Shabnam AA, Shukla P, Abbagani S, Kamili AN. Indirect regeneration and genetic fidelity analysis of acclimated plantlets through SCoT and ISSR markers in Morus alba L. cv. Chinese white. Biotechnol Rep. 2020;25:e00417.

    Google Scholar 

  186. Roy G, Mandal K, Ravikumar G. PCR-based detection of microsporidia in silkworms using non-conventional RNA polymerase primers. Biosci Biotechnol Res Commun. 2017;10:676–9.

    Google Scholar 

  187. Saeed B, Das M, Haq QMR, Khurana P. Overexpression of beta carotene hydroxylase-1 (bch1) in mulberry, Morus indica cv. K-2, confers tolerance against high-temperature and high irradiance stress induced damage. Plant Cell Tissue Organ Cult. 2015;120:1003–15.

    CAS  Google Scholar 

  188. Saeed B, Baranwal VK, Khurana P. Comparative transcriptomics and comprehensive marker resource development in mulberry. BMC Genom. 2016;17:1–14.

    Google Scholar 

  189. Saha S, Adhikari S, Dey T, Ghosh PD. RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta Gene. 2016;7:7–15.

    PubMed  Google Scholar 

  190. Sahay A, Satpathy S, Sharan SK. Field trial experiment of artificial diet on tasar silkworm, Anthereaea myltta D. Nat Prec. 2011. https://doi.org/10.1038/npre.2011.6701.1.

    Article  Google Scholar 

  191. Sajeevan RS, Jeba Singh S, Nataraja KN, Shivanna MB. An efficient in vitro protocol for multiple shoot induction in mulberry, Morus alba L. variety V1. Int Res J Plant Sci. 2011;2:254–61.

    Google Scholar 

  192. Sajeevan RS, Nataraja KN, Shivashankara KS, Pallavi N, Gurumurthy DS, Shivanna MB. Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Front Plant Sci. 2017;8:418.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Sanjeeva Reddy K, Mahalingam CM, Murugesh KA, Mohankumar S. Exploring the genetic variability in Bombyx mori L. with molecular marker. Karnataka J Agric Sci. 2009;22:479–83.

    Google Scholar 

  194. Saotome T, Hayashi H, Tanaka R, Kinugasa A, Uesugi S, Tatematsu K, Sezutsu H, Kuwabara N, Asakura T. Introduction of VEGF or RGD sequences improves revascularization properties of Bombyx mori silk fibroin produced by transgenic silkworm. J Mater Chem B. 2015;35:7109–16.

    Google Scholar 

  195. Sarkar A, Kumar JS, Datta RK. Gradual improvement of mulberry varieties under irrigated conditions in South India and the optimal program for varietal selection in the tropics. Sericologia. 2000;40:449–61.

    Google Scholar 

  196. Selvakumar T, Nataraju B, Balvenkatsubbaiah M, Sivaprasad V, Baig M, Kumar V, Sharma SD, Thiagrajan V, Datta RK. A report on the prevalence of silkworm diseases and estimated crop loss. In: Dandin SB, Gupta VP, editors. Strategies for sericulture research and development. CSRTI: Mysore; 2002. p. 354–7.

    Google Scholar 

  197. Shamim M, Baig M, Nataraju B, Datta RK, Gupta SK. Evaluation of protein-a linked monoclonal antibody latex agglutination test for diagnosis of nuclear polyhedrosis virus (BmNPV) of silkworm Bombyx mori L. J Immunoassay. 1995;1995(16):155–66.

    Google Scholar 

  198. Sharma A, Sharma R, Machii H. Assessment of genetic diversity in a Morus germplasm collection using fluorescence-based AFLP markers. Theor Appl Genet. 2000;101:1049–55.

    CAS  Google Scholar 

  199. Sharma S, Bano S, Ghosh AS, Mandal M, Kim HW, Dey T, Kundu SC. Silk fibroin nanoparticles support in vitro sustained antibiotic release and osteogenesis on titanium surface. Nanomed Nanotechnol Biol Med. 2016;12:1193–204.

    CAS  Google Scholar 

  200. Sheet S, Ghosh K, Acharya S, Kim K-P, Lee YS. Estimating genetic conformism of korean mulberry cultivars using random amplified polymorphic DNA and inter-simple sequence repeat profiling. Plants. 2018;7:21.

    PubMed Central  Google Scholar 

  201. Shi J, Heckel DG, Goldsmith MR. A genetic linkage map for the domesticated silkworm, Bombyx mori, based on restriction fragment length polymorphisms. Genet Res Camb. 1995;66:109–26.

    CAS  Google Scholar 

  202. Shruti AJ, Hadimani DK, Sreenivas AG, Beladhadi RV. Effect of probiotic feed supplements to mulberry silkworm, Bombyx mori L. for larval growth and development parameters. Int J Chem Stud. 2019;7:3914–9.

    CAS  Google Scholar 

  203. Sinha RK, Ramesha MN, Gowda V, Vathsala TV, Perugu AY. Seir-states of India—a profile. New Delhi: Astral International Pvt. Ltd.; 2019.

    Google Scholar 

  204. Sreekumar S, Ashwath SK, Slathia M, Kumar SN, Qadri SMH. Detection of a single nucleotide polymorphism (SNP) DNA marker linked to cocoon traits in the mulberry silkworm, Bombyx mori (Lepidoptera: Bombycidae). Eur J Entomol. 2011;108:347–54.

    CAS  Google Scholar 

  205. Srivastava PP, Vijayan K, Awasthi AK, Saratchandra B. Genetic analysis of Morus alba through RAPD and ISSR markers. Indian J Biotechnol. 2004;3:527–32.

    CAS  Google Scholar 

  206. Srivastava PP, Vijayan K, Awasthi AK, Kar PK, Thangavelu K, Saratchandra B. Genetic analysis of silkworms (Bombyx mori) through RAPD markers. Indian J Biotechnol. 2005;4:389–95.

    CAS  Google Scholar 

  207. Srivastava PP, Vijayan K, Kar PK, Saratchandra B. Diversity and marker association in tropical silkworm breeds of Bombyx mori (Lepidoptera: Bombycidae). Int J Trop Insect Sci. 2011;31:182–91.

    Google Scholar 

  208. Staub JE, Serquen FC. Genetic markers, map construction, and their application in plant breeding. Hortic Sci. 1996;31:729–41.

    CAS  Google Scholar 

  209. Subbaiah EV, Royer C, Kanginakudru S, Satyavathi VV, Babu AB, Sivaprasad V, Chavancy G, DaRocha M, Jalabert A, Mauchamp B, Basha I, Couble P, Nagaraju J. Engineering silkworms for resistance to baculovirus through multigene RNA interference. Genetics. 2013;193:63–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Sugihara A, Sugiura K, Morita H, Ninagawa T, Tubouchi K, Tobe R, Izumiya M, Horio T, Abraham NG, Ikehara S. Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds. Proc Soc Exp Biol Med. 2000;225:58–64.

    CAS  PubMed  Google Scholar 

  211. Sugimura Y, Miyazaki J, Yonebayashi K, Kotani E, Furusawa T. Gene transfer by electroporation into protoplasts isolated from mulberry call. J Seric Sci Jpn. 1999;68:49–53.

    Google Scholar 

  212. Suraporn S, Sangsuk W, Chanhan P, Promma S. Effects of probiotic bacteria on the growth parameters of the Thai silkworm, Bombyx mori. Thai J Agric Sci. 2015;48:29–33.

    Google Scholar 

  213. Susheelamma BN, Jolly MS, Sengupta K, Venkateswarlu M, Suryanarayana N. Quantitative assessment of drought resistant mulberry genotype leaves cultivated under natural stress (low rain fall) conditions by feeding larvae of Bombyx mori L. In: Sampath J, editor. Proceedings of the International congress on tropical sericulture practice. Central Silk Board, Bangalore; 1988. p. 89–101.

  214. Tada MY, Tatematsu KY, Ishii-Watabe A, Harazono A, Takakura D, Hashii N, Sezutsu H, Kawasak N. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). MAbs. 2015;7:1138–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Taha H, Ghazy UM, Gabr AMM, El-Kazzaz AAA, Ahmed EAMM, Haggag KM. Optimization of in vitro culture conditions affecting propagation of mulberry plant. Bull Natl Res Cent. 2020. https://doi.org/10.1186/s42269-020-00314-y.

    Article  Google Scholar 

  216. Talebi E, Khademi M, Subramanya G. RAPD markers for understanding of the genetic variability among the four silkworm races and their hybrids. Middle East J Sci Res. 2011;7:789–95.

    CAS  Google Scholar 

  217. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P. Germline transformation of the silkworm Bombyx mori L. using a PiggyBac transposon-derived vector. Nat Biotechnol. 2000;18:81–4.

    CAS  PubMed  Google Scholar 

  218. Tan Y-D, Wan C, Zhu Y, Lu C, Xiang Z, Deng H-W. An amplified fragment length polymorphism map of the silkworm. Genetics. 2001;157:1277–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Tekin QK, Sezer D, Soganci K, Tunca RI. Molecular and microscopic detection of microsporidia in some silkworm (Bombyx mori L.) populations in Turkey. Turk J Agric Nat Sci. 2014;1:450–3.

    Google Scholar 

  220. Thomas TD. Thidiazuron induced multiple shoot induction and plant regeneration from cotyledonary explants of mulberry. Biol Plant. 2003;46:529–33.

    CAS  Google Scholar 

  221. Thomas TD, Bhatnagar AK, Bhojwani SS. Production of triploid plants of mulberry (Morus alba L.) by endosperm culture. Plant Cell Rep. 2000;19:395–9.

    CAS  PubMed  Google Scholar 

  222. Thorpe TA. Biotechnological applications of tissue culture to forest tree improvement. Biotechnol Adv. 1983;1:263–78.

    CAS  PubMed  Google Scholar 

  223. Thumilan BM, Kadam NN, Biradar J, Sowmya HR, Mahadeva A, Madhura JN, Makarla U, Khurana P, Sreeman SM. Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species. BMC Plant Biol. 2013;13:194. https://doi.org/10.1186/1471-2229-13-194.

    Article  CAS  Google Scholar 

  224. Thumilan BM, Sajeevan RS, Biradar J, Madhuri T, Nataraja KN, Sreeman SM. Development and characterization of genic SSR markers from Indian mulberry transcriptome and their transferability to related species of Moraceae. PLoS ONE. 2016;11:e0162909. https://doi.org/10.1371/journal.pone.0162909.

    Article  CAS  Google Scholar 

  225. Tikader A, Dandin SB. DNA fingerprint of inter and intraspecific hybrids from Morus species using RAPD. Geobios. 2008;35:113–20.

    CAS  Google Scholar 

  226. Tikader A, Kamble CK. Mulberry wild species in India and their use in crop improvement—a review. Aust J Crop Sci. 2008;2:64–72.

    Google Scholar 

  227. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol. 2003;21:52–6.

    CAS  PubMed  Google Scholar 

  228. Trivedy K, Nair KS, Ramesh M, Nisha G, Nirmal SK. New semi-synthetic diet “Nutrid”-a technology for rearing young instar silkworm in India. Indian J Seric. 2003;42:158–61.

    Google Scholar 

  229. Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Yoshida S, Fujikawa S. Accumulation of small heat shock protein in the endoplasmic reticulum of cortical parenchyma cells in mulberry in association with seasonal cold acclimation. Plant Physiol. 1999;120:481–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Fu-jikawa S. Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cells of mulberry tree was homologous to group 3 late embryogenesis abundant proteins. Plant Physiol. 2001;126:1588–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Umate P, Rao KV, Kiranmayee K, Jaya Sree T, Sadanandam A. Plant regeneration of mulberry (Morus indica) from mesophyll derived protoplasts. Plant Cell Tissue Organ Cult. 2005;82:289–93.

    CAS  Google Scholar 

  232. Vanapruk P, Attathom T, Sanbatsiri K, Attathom S. Comparison of methods for the detection of nuclear polyhedrosis virus in silkworm, Bombyx mori Linn. In: Proceedings of the 30th Kasetsart University annual conference: plant science, Kasetsart University, Bangkok, Thailand; 1992. pp. 237–243.

  233. Varada B, Pradeep ANR, Awasthi AK, Sivaprasad V, Ponnuvel KM, Mishra RK. Non-target host immune gene modulation in transgenic silkworm Bombyx mori endowed with RNAi silence BmNPV genes. Biotechnol J Int. 2017;20:1–12.

    Google Scholar 

  234. Vasil IK. A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep. 2008;2008(27):1423–40.

    Google Scholar 

  235. Velu D, Ponnuvel KM, Muthulakshmi M, Sinha RK, Qadri SMH. Analysis of genetic relationship in mutant silkworm strains of Bombyx mori using inter simple sequence repeat (ISSR) markers. J Genet Genom. 2008;35:291–7.

    CAS  Google Scholar 

  236. Venkateswarlu M, Saratchandra B, Surendranath B, Vijayan K, Rajeurs S. Strategies for genome mapping and marker assisted selection in mulberry. J Cytol Genet. 2005;5:111–24.

    Google Scholar 

  237. Venkateswarlu M, Raje US, Surendra NB, Shashidhar HE, Maheswaran M, Veeraiah TM, Sabitha MG. A first genetic linkage map of mulberry (Morus spp.) using RAPD, ISSR, and SSR markers and pseudotestcross mapping strategy. Tree Genet Genomes. 2006;3:15–24.

    Google Scholar 

  238. Vijayan K. Genetic relationships of Japanese and Indian mulberry (Morus spp.) revealed by DNA fingerprinting. Plant Syst Evol. 2004;243:221–32.

    CAS  Google Scholar 

  239. Vijayan K. Molecular markers and their application in mulberry breeding. Int J Ind Entomol. 2007;15:01–11.

    Google Scholar 

  240. Vijayan K, Chatterjee SN. ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica. 2003;131:53–63.

    CAS  Google Scholar 

  241. Vijayan K, Chakraborti SP, Roy BN. Plant regeneration from leaf explants of mulberry: influence of sugar, genotype and 6-benzyladenine. Indian J Exp Biol. 2000;38:504–8.

    CAS  PubMed  Google Scholar 

  242. Vijayan K, Srivastava PP, Awasthi AK. Analysis of phylogenetic relationship among five mulberry (Morus) species using molecular markers. Genome. 2004;47:439–48.

    CAS  PubMed  Google Scholar 

  243. Vijayan K, Kar PK, Tikader A, Srivastava PP, Awasthi AK, Thangavelu K, Saratchandra B. Molecular evaluation of genetic variability in wild populations of mulberry (Morus serrata Roxb.). Plant Breed. 2004;123:568–72.

    CAS  Google Scholar 

  244. Vijayan K, Awasthi AK, Srivastava PP, Saratchandra B. Genetic analysis of Indian mulberry varieties through molecular markers. Hereditas. 2004;141:8–14.

    CAS  PubMed  Google Scholar 

  245. Vijayan K, Chatterjee SN, Nair CV. Molecular characterization of mulberry genetic resources indigenous to India. Genet Resour Crop Evol. 2005;52:77–86.

    CAS  Google Scholar 

  246. Vijayan K, Nair CV, Kar PK, Madhusudan TP, Saratchandra B, Raje US. Genetic variability within and among three ecoraces of the tasar silkworm Antheraea mylitta drury as revealed by ISSR and RAPD markers. Int J Ind Entomol. 2005;10:283–90.

    Google Scholar 

  247. Vijayan K, Srivastava PP, Nair CV, Tikader A, Awasthi AK, Urs SR. Molecular characterization and identification of markers associated with leaf yield traits in mulberry using ISSR markers. Plant Breed. 2006;125:298–301.

    CAS  Google Scholar 

  248. Vijayan K, Nair CV, Chatterjee SN. Diversification of mulberry (Morus indica var. S36), a vegetatively propagated tree species. Casp J Environ Sci. 2009;7:23–30.

    Google Scholar 

  249. Vijayan K, Nair CV, Urs SR. Assessment of genetic diversity in the tropical mulberry silkworm (Bombyx mori L.) with mtDNA-SSCP and SSR markers. Emir J Food Agric. 2010;22:71–83.

    Google Scholar 

  250. Vijayan KA, Tikader A, da Silva JAT. Application of tissue culture techniques for propagation and crop improvement in mulberry (Morus spp.). Tree For Sci Biotechnol. 2011;5:1–13.

    Google Scholar 

  251. Vijayan K, Raju PJ, Tikader A, Saratchnadra B. Biotechnology of mulberry (Morus L.)—a review. Emir J Food Agric. 2014;26:472–96.

    Google Scholar 

  252. Vijaykumar A, Patil GM, Kavita MB. Effective concentration of azolla supplementation to grown up silkworms. Adv Life Sci. 2016;5:4029–38.

    Google Scholar 

  253. Vlaic B, Marghitas LA, Vlaic A, Raica P. Analysis of genetic diversity of mulberry silkworm (Bombyx mori L.) using RAPD molecular markers. Anim Sci Biotechnol. 2012;69:292–6.

    Google Scholar 

  254. Vootla SK, Lu MX, Kari N, Gadwala M, Lu Q. Rapid detection of infectious flacherie virus of the silkworm, Bombyx mori, using RT-PCR and nested PCR. J Insect Sci. 2013;13:120.

    PubMed  PubMed Central  Google Scholar 

  255. Wang H, Lou C, Zhang Y, Tan J, Jiao F. Preliminary report on Oryza cystatin gene transferring into mulberry and production of transgenic plants. Acta Sericologica Sin. 2003;29:291–4.

    Google Scholar 

  256. Wang Z, Zhang Y, Dai F, Luo G, Xiao G, Tang C. Genetic diversity among mulberry genotypes from seven countries. Physiol Mol Biol Plants. 2017;23:421–7.

    PubMed  PubMed Central  Google Scholar 

  257. Wangari NP, Gacheri KM, Theophilus MM, Lucas N. Use of SSR markers for genetic diversity studies in mulberry accessions grown in Kenya. Int J Biotechnol Mol Biol Res. 2013;4:38–44.

    CAS  Google Scholar 

  258. Wani SA, Bhat MA, Malik GN, Zaki FA, Mir MR, Wani N, Bhat KM. Genetic diversity and relationship assessment among mulberry (Morus spp.) genotypes by simple sequence repeat (SSR) marker profile. Afr J Biotechnol. 2013;12:3181–7.

    CAS  Google Scholar 

  259. Wei GQ, Yu L, Liu CL, Zhu BJ, Ding HJ. Linkage and mapping analyses of the normal marking gene +P in the silkworm (Bombyx mori) using SSR markers. Genet Mol Res. 2013;12:2351–9.

    CAS  PubMed  Google Scholar 

  260. Wei-Guo Z, Yile P, Shihai ZZJ, Xuexia M, Yongping H. Phylogeny of the genus Morus (Urticales: Moraceae) inferred from ITS and trnL-F sequences. Afr J Biotechnol. 2005;4:563–9.

    Google Scholar 

  261. Wei-Guo Z, Xue-Xia M, Bo Z, Lin Z, Yi-Le P, Yong-Ping H. Construction of fingerprinting and genetic diversity of mulberry cultivars in China by ISSR markers. Acta Genetica Sin. 2006;33:851–60.

    Google Scholar 

  262. Weiguo Z, Yile P. Genetic diversity of genus Morus revealed by RAPD markers. Int J Agric Biol. 2004;6:950–5.

    Google Scholar 

  263. Weiguo Z, Zhihua Z, Xuexia M, Yong Z, Sibao W, Jianhua H, Hui X, Yile P, Yongping H. A comparison of genetic variation among wild and cultivated Morus species (Moraceae: Morus) as revealed by ISSR and SSR markers. Biodivers Conserv. 2007;16:275–90.

    Google Scholar 

  264. Wulandari YRE, Harjosudirjo MA. Micropropagation of Morus cathayana through in vitro culture from local Bogor, West Java, Indonesia. Nu Biosci. 2019;11:18–22.

    Google Scholar 

  265. Xu Y, Wang H, Qin R, Fang L, Liu Z, Yuan S, Gai Y, Ji X. Characterization of NPR1 and NPR4 genes from mulberry (Morus multicaulis) and their roles in development and stress resistance. Physiol Plant. 2019;167:302–16.

    CAS  PubMed  Google Scholar 

  266. Xuan Y, Wu Y, Li P, Liu R, Luo Y, Yuan J, Xiang Z, He N. Molecular phylogeny of mulberries reconstructed from ITS and two cpDNA sequences. PeerJ. 2019;7:e8158.

    PubMed  PubMed Central  Google Scholar 

  267. Yamamoto K, Narukawa J, Kadono-Okuda K, Nohata J, Sasanuma M, Suetsugu Y, Banno Y, Fujii H, Goldsmith MR, Mita K. Construction of a single nucleotide polymorphism linkage map for the silkworm, Bombyx mori, based on bacterial artificial chromosome end sequences. Genetics. 2006;173:151–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Yamamoto K, Nohata J, Kadono-Okuda K, Narukawa J, Sasanuma M, Sasanuma SI, Minami H, Shimomura M, Suetsugu Y, Banno Y, Osoegawa K, de Jong PJ, Goldsmith MR, Mita K. A BAC-based integrated linkage map of the silkworm Bombyx mori. Gen Biol. 2008;9:R21. https://doi.org/10.1186/gb-2008-9-1-r21.

    Article  CAS  Google Scholar 

  269. Yang HX, Zhu XR, Lu HS. Research progress on application of silkworm pupas in medical science. Bull Sci Technol. 2002;18:318–22.

    Google Scholar 

  270. Yasukochi Y. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics. 1998;150:1513–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Yasukochi Y. A simple and accurate method for generating co-dominant markers: an application of conformation-sensitive gel electrophoresis to linkage analysis in the silkworm. Mol Gen Genet. 1999;261:796–802.

    CAS  PubMed  Google Scholar 

  272. Zaki M, Kaloo ZA, Sofi M. Micropropagation of Morus nigra L. from nodal segments with axillary buds. World J Agri Sci. 2011;7:496–503.

    CAS  Google Scholar 

  273. Zhan S, Huang J, Guo Q, Zhao Y, Li W, Miao X, Goldsmith MR, Li M, Huang Y. An integrated genetic linkage map for silkworms with three parental combinations and its application to the mapping of single genes and QTL. BMC Genom. 2009;10:389.

    Google Scholar 

  274. Zhao W, Pan Y. Genetic diversity of genus Morus revealed by RAPD markers in China. Int J Agric Biol. 2004;6:950–4.

    CAS  Google Scholar 

  275. Zhao W, Miao X, Jia S, Pan Y, Huang Y. Isolation and characterization of microsatellite loci from the mulberry, Morus L. Plant Sci. 2005;16:519–25.

    Google Scholar 

  276. Zhao W, Zhou Z, Miao X, Wang S, Zhang L, Pan Y, Huang Y. Genetic relatedness among cultivated and wild mulberry (Moraceae: Morus) as revealed by inter-simple sequence repeat (ISSR) analysis in China. Can J Plant Sci. 2006;86:251–7.

    CAS  Google Scholar 

  277. Zhao W, Wang Y, Chen T, Jia G, Wang X, Qi J, Pang Y, Wang S, Li Z, Huang Y, Pan Y, Yang Y-H. Genetic structure of mulberry from different ecotypes revealed by ISSRs in China: an implications for conservation of local mulberry varieties. Sci Hortic. 2007;115:47–55.

    CAS  Google Scholar 

  278. Zhao W, Fang R, Pan Y, Yang Y, Chung JW, Chung IM, Park YJ. Analysis of genetic relationships of mulberry (Morus L.) germplasm using sequence-related amplified polymorphism (SRAP) markers. Afr J Biotechnol. 2009;8:2604–10.

    CAS  Google Scholar 

  279. Zhao A, Zhao T, Zhang Y, Xia Q, Lu C, Zhou Z, Xiang Z, Nakagaki M. New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res. 2010;19:29–44.

    PubMed  Google Scholar 

  280. Zhao X, Wei G, Liu C, Zou C, Zhu B. Linkage and mapping analyses of the no glue egg gene Ng in the silkworm (Bombyx mori L.) using simple sequence repeats (SSR) markers. Afr J Biotechnol. 2011;10:9549–56.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Raiganj University and University of Kalyani, West Bengal, India for providing instrumentation and library facilities.

Author information

Authors and Affiliations

Authors

Contributions

KA provided the conception and design of the study, drafting the article; RVS: supplied the acquisition of data, drafting of manuscript; TC: supplied the acquisition of data, drafting of manuscript; AB: supplied the acquisition of data; PDG: supplied the acquisition of data; SS: provided the critically revised article with important intellectual content and gave final approval of this version to be submitted.

Corresponding author

Correspondence to Soumen Saha.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Bani Gajra; Reviewers: Gaurab Gangopadhyay, Devendra Kumar Pandey.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 415 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, K., Raviraj, V.S., Chowdhury, T. et al. Application of biotechnology in sericulture: Progress, scope and prospect. Nucleus 65, 129–150 (2022). https://doi.org/10.1007/s13237-021-00355-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-021-00355-2

Keywords

Navigation