Skip to main content
Log in

Crystallization behaviors and morphology of novel poly(octamethylene adipate-co-octamethylene succinate) and poly(octamethylene adipate)

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Crystallization behaviors and morphology of novel biodegradable poly(octamethylene adipate-cooctamethylene succinate) (POAS) copolymers with different octamethylene succinate (OS) contents and their parent homopolymer poly(octamethylene adipate) (POA) were extensively investigated. Compared to POA, increasing the OS unit does not modify the crystal structures but slightly decreases the crystallinity values of POAS. The glass transition temperature values of POAS are greater than that of POA. Both the nonisothermal crystallization peak temperature and melting point temperature values of POAS decrease gradually with the increment of the OS unit. The overall isothermal melt crystallization rates of POAS decrease with increasing crystallization temperature and the OS content, while the crystallization mechanism does not change. The equilibrium melting point values of POAS are reduced with increasing the OS content, with respect to POA. The nucleation densities of POAS spherulites are reduce significantly; moreover, increasing crystallization temperature and the OS content reduces the spherulitic growth rates of POAS, relative to POA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Zeng, M. Srinivansan, S. Li, R. Narayan, and Y. Wang, Ind. Eng. Chem. Res., 50, 4471 (2011).

    Article  CAS  Google Scholar 

  2. Q. Zhu, Y. He, J. Zeng, Q. Huang, and Y. Wang, Mater. Chem. Phys., 130, 943 (2011).

    Article  CAS  Google Scholar 

  3. H. Chen, X. Wang, J. Zeng, L. Li, F. Dong, and Y. Wang, Ind. Eng. Chem. Res., 50, 2065 (2011).

    Article  CAS  Google Scholar 

  4. S. Zhang, J. Yang, X. Liu, J. Chang, and A. Cao, Biomacromolecules, 4, 437 (2003).

    Article  CAS  Google Scholar 

  5. J. Park, J. Jeon, J. Lee, Y. Jang, J. Varghese, and B. Lee, Macromolecules, 46, 3301 (2013).

    Article  CAS  Google Scholar 

  6. L. Nair and C. Laurencin, Prog. Ploym. Sci., 32, 762 (2007).

    Article  CAS  Google Scholar 

  7. R. Chandra and R. Rustgi, Prog. Ploym. Sci., 23, 1273 (1998).

    Article  CAS  Google Scholar 

  8. Z. Liang, P. Pan, B. Zhu, and Y. Inoue, Macromolecules, 43, 6429 (2010).

    Article  CAS  Google Scholar 

  9. G. Papageorgiou and D. Bikiaris, Polymer, 46, 12081 (2005).

    Article  CAS  Google Scholar 

  10. L. Zhao, X. Wang, L. Li, and Z. Gan, Polymer, 48, 6152 (2007).

    Article  CAS  Google Scholar 

  11. G. Papageorgiou and D. Bikiaris, J. Polym. Sci., Part B: Polym. Phys., 44, 584 (2006).

    Article  CAS  Google Scholar 

  12. G. Papageorgiou, D. Bikiaris, and C. Panayiotou, Polymer, 52, 4553 (2011).

    Article  CAS  Google Scholar 

  13. L. Jiang, M. Wolcott, and J. Zhang, Biomacromolecules, 7, 199 (2006).

    Article  Google Scholar 

  14. H. Wang, Z. Gan, J. Schultz, and S. Yan, Polymer, 49, 2342 (2008).

    Article  CAS  Google Scholar 

  15. D. Wu, Y. Cheng, S. Feng, Z. Yao, and M. Zhang, Ind. Eng. Chem. Res., 52, 6731 (2013).

    Article  CAS  Google Scholar 

  16. G. Papageorgiou, D. Achilias, S. Nanaki, T. Beslikas, and D. Bikiaris, Thermochim. Acta, 511, 129 (2010).

    Article  CAS  Google Scholar 

  17. P. Pan, Z. Liang, A. Cao, and Y. Inoue, ACS Appl. Mater. Interfaces, 1, 402 (2009).

    Article  CAS  Google Scholar 

  18. V. Tserki, P. Matzinos, E. Pavlidou, D. Vachliotis, and C. Panayiotou, Polym. Degrad. Stab., 91, 367 (2006).

    Article  CAS  Google Scholar 

  19. Z. Liang, P. Pan, B. Zhu, and Y. Inoue, Polymer, 52, 2667 (2011).

    Article  CAS  Google Scholar 

  20. X. Li, Z. Hong, J. Sun, Y. Geng, and Y. Huang, J. Phys. Chem. B, 113, 2695 (2009).

    Article  CAS  Google Scholar 

  21. W. Zhou, X. Wang, B. Yang, Y. Xu, W. Zhang, Y. Zhang, and J. Ji, Polym. Degrad. Stab., 98, 2177 (2013).

    Article  CAS  Google Scholar 

  22. G. Wang and Z. Qiu, Ind. Eng. Chem. Res., 51, 16369 (2012).

    Article  CAS  Google Scholar 

  23. F. Li, X. Xu, Q. Hao, Q. Li, J. Yu, and A. Cao, J. Polym. Sci., Part B: Polym. Phys., 44, 1635 (2006).

    Article  CAS  Google Scholar 

  24. Z. Gan, H. Abe, and Y. Doi, Biomacromolecules, 1, 704 (2000).

    Article  CAS  Google Scholar 

  25. K. Ihn, E. Yoo, and S. Im, Macromolecules, 28, 2460 (1995).

    Article  CAS  Google Scholar 

  26. J. Liu, H. Ye, J. Xu, and B. Guo, Polymer, 52, 4619 (2011).

    Article  CAS  Google Scholar 

  27. Z. Gan, H. Abe, and Y. Doi, Macromol. Chem. Phys., 203, 2369 (2002).

    Article  CAS  Google Scholar 

  28. J. Yang, P. Pan, T. Dong, and Y. Inoue, Polymer, 51, 807 (2010).

    Article  CAS  Google Scholar 

  29. A. Meyer, K. Yen, S. Li, S. Företer, and E. Woo, Ind. Eng. Chem. Res., 49, 12084 (2010).

    Article  CAS  Google Scholar 

  30. Z. Qiu, S. Fujinami, M. Komura, K. Nakajima, T. Ikehara, and T. Nishi, Polym. J., 36, 642 (2004).

    Article  CAS  Google Scholar 

  31. Y. Yang and Z. Qiu, CrystEngComm, 13, 2408 (2011).

    Article  CAS  Google Scholar 

  32. H. Wu and Z. Qiu, CrystEngComm, 14, 3586 (2012).

    Article  CAS  Google Scholar 

  33. C. Huang, L. Jiao, J. Zhang, J. Zeng, K. Yang, and Y. Wang, Polym. Chem., 3, 800 (2012).

    Article  CAS  Google Scholar 

  34. Y. Zhai, S. Guo, A. Dong, F. Jin, C. Xie, J. Zhang, and L. Deng, React. Funct. Polym., 68, 1415 (2008).

    Article  CAS  Google Scholar 

  35. A. Turner-Jones and C. Bunn, Acta Cryst., 15, 105 (1962).

    Article  CAS  Google Scholar 

  36. C. Liu, Z. Jiang, J. Decatur, W. Xie, and R. Gross, Macromolecules, 44, 1471 (2011).

    Article  CAS  Google Scholar 

  37. W. Guo, Z. Shen, B. Guo, L. Zhang, and D. Jia, Polymer, 55, 4324 (2014).

    Article  CAS  Google Scholar 

  38. S. Gesti, M. Casas, and J. Puiggali, Eur. Polym. J., 44, 2295 (2008).

    Article  CAS  Google Scholar 

  39. H. Fu, A. Kulshrestha, W. Gao, and R. Gross, Macromolecules, 36, 9804 (2003).

    Article  CAS  Google Scholar 

  40. G. Wang, B. Gao, H. Ye, J. Xu, and B. Guo, J. Appl. Polym. Sci., 117, 2538 (2010).

    CAS  Google Scholar 

  41. M. Avrami, J. Chem. Phys., 8, 212 (1940).

    Article  CAS  Google Scholar 

  42. M. Avrami, J. Chem. Phys., 9, 177 (1940).

    Article  Google Scholar 

  43. B. Wunderlich, Macromolecular Physics, Academic Press, New York, 1976, Vol. 2.

  44. J. Hoffman and J. Weeks, J. Chem. Phys., 42, 4301 (1965).

    Article  CAS  Google Scholar 

  45. J. Hoffman, G. Davis, and J. Lauritzen, in Treatise on Solid State Chemistry, N. B. Hannay, Ed., Plenum Press, New York, 1976, Vol. 3, pp 497–614.

    Article  CAS  Google Scholar 

  46. G. Strobl, Prog. Polym. Sci., 31, 398 (2006).

    Article  CAS  Google Scholar 

  47. Z. Gan, H. Abe, H. Kurokawa, and Y. Doi, Biomacromolecules, 2, 605 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaobin Qiu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Qiu, Z. Crystallization behaviors and morphology of novel poly(octamethylene adipate-co-octamethylene succinate) and poly(octamethylene adipate). Macromol. Res. 23, 678–685 (2015). https://doi.org/10.1007/s13233-015-3083-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3083-4

Keywords

Navigation