Skip to main content

Advertisement

Log in

Potentials of termite mound soil bacteria in ecosystem engineering for sustainable agriculture

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The environmental deteriorating effects arising from the misuse of pesticides and chemical fertilizers in agriculture has resulted in the pursuit of eco-friendly means of producing agricultural produce without compromising the safety of the environment. Thus, the purpose of this review is to assess the potential of bacteria in termite mound soil to serve as biofertilizer and biocontrol as a promising tool for sustainable agriculture. This review has been divided into four main sections: termite and termite mound soils, bacterial composition in termite mound soil, the role of bacteria in termite mound soil as biofertilizers, and the role of bacteria in termite mound soil as biocontrol. Some bacteria in termite mound soils have been isolated and characterized by various means, and these bacteria could improve the fertility of the soil and suppress soil borne plant pathogens through the production of antibiotics, nutrient fixation, and other means. These bacteria in termite mound soils could serve as a remarkable means of reducing the reliance on the usage of chemical fertilizers and pesticides in farming, thereby increasing crop yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971

    Article  PubMed  PubMed Central  Google Scholar 

  • Arumugam M, Pushpanathan M, Sathyavathi S, Gunasekaran P, Rajendhran J (2016) Comparative analysis of microbial diversity in termite gut and termite nest using ion sequencing. Curr Microbiol 72:267–275

    Google Scholar 

  • Ayitso AS, Onyango DM, Wagai SO (2015) Antimicrobial activities of microorganisms obtained from the gut of Macrotermes michaelseni in Maseno, Kenya. J Appl Biol Biotechnol 3(06):048–052

    CAS  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Bama PS, Ravindran AD (2012) Dynamics of P sorption and solubilising activity in termite nest material. Asian J Res Soc Sci Hum 2(10):231–237

    Google Scholar 

  • Bandounas L, Wierckx NJ, De Winde JH, Ruijssenaars HJ (2011) Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol 11(1):94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batalha L, Da Silva Filho D, Martius C (1995) Using termite nests as a source of organic matter in agrosilvicultural production systems in Amazonia. Sci Agric 52(2):318–325

    Article  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  PubMed  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84(1):11–18

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13(1):66

    Article  Google Scholar 

  • Bignell DE (2010) Morphology, physiology, biochemistry and functional design of the termite gut: an evolutionary wonderland biology of termites: a modern synthesis. Springer, Dordrecht, pp 375–412

    Google Scholar 

  • Brune A, Ohkuma M (2010) Role of the termite gut microbiota in symbiotic digestion biology of termites: a modern synthesis. Springer, Dordrecht, pp 439–475

    Book  Google Scholar 

  • Chakdar H, Dastager SG, Khire JM, Rane D, Dharne MS (2018) Characterization of mineral phosphate solubilizing and plant growth promoting bacteria from termite soil of arid region. Biotech 8(11):463. https://doi.org/10.1007/s13205-018-1488-4

    Article  Google Scholar 

  • Chauhan AK, Maheshwari DK, Kim K, Bajpai VK (2016) Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Can J Microbiol 62(10):880–892

    Article  CAS  PubMed  Google Scholar 

  • Chauhan AK, Maheshwari DK, Dheeman S, Bajpai VK (2017) Termitarium-inhabiting Bacillus spp. enhanced plant growth and bioactive component in turmeric (Curcuma longa L.). Curr Microbiol 74(2):184–192

    Article  CAS  PubMed  Google Scholar 

  • Choudhary M, Datta A, Jat HS et al (2018) Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in indo-Gangetic Plains. Geoderma 313:193–204

    Article  CAS  Google Scholar 

  • Chouvenc T, Efstathion CA, Elliott ML, Su N-Y (2013) Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc R Soc Biol Sci 280(1770):1–9

    Article  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015) Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Front Microbiol 6:780

    Article  PubMed  PubMed Central  Google Scholar 

  • Conway G (2012) One billion hungry: can we feed the world? Cornell University Press, London

    Google Scholar 

  • Costa PS, Oliveira PL, Chartone-Souza E, Nascimento AMA (2013) Phylogenetic diversity of prokaryotes associated with the mandibulate nasute termite Cornitermes cumulans and its mound. Biol Fertil Soils 49(5):567–574. https://doi.org/10.1007/s00374-012-0742-x

    Article  CAS  Google Scholar 

  • Da Silva Fonseca E, Peixoto RS, Rosado AS, De Carvalho Balieiro F, Tiedje JM, Da Costa Rachid CTC (2018) The microbiome of eucalyptus roots under different management conditions and its potential for biological nitrogen fixation. Microb Ecol 75(1):183–191

    Article  CAS  Google Scholar 

  • Dastager S, Deepa C, Puneet S, Nautiyal C, Pandey A (2009) Isolation and characterization of plant growth-promoting strain Pantoea NII-186. From Western Ghat Forest soil, India. Lett Appl Microbiol 49(1):20–25

    Article  CAS  PubMed  Google Scholar 

  • Deke AL, Adugna WT, Fite AT (2016) Soil physic-chemical properties in termite mounds and adjacent control soil in Miyo and Yabello districts of Borana zone, southern Ethiopia. Am J Agric For 4(4):69–74

    Google Scholar 

  • Devi R, Thakur R (2018) Screening and identification of bacteria for plant growth promoting traits from termite mound soil. J Pharmacogn. Phytochem 7(2):1681–1686

    CAS  Google Scholar 

  • Devi R, Thakur R, Gupta M (2018) Isolation and molecular characterization of bacterial strains with antifungal activity from termite mound soil. Int J Curr Microbiol App Sci 7(4):1–7

    Article  CAS  Google Scholar 

  • Dhembare A (2013) Physico-chemical properties of termite mound soil. Arc Appl Sci Res 5(6):123–126

    Google Scholar 

  • Dhembare A, Pokale A (2013) Physico-chemical properties of termite mound soil from Lohare, Ahmednagar Maharashtra. International E Publication, Ahemdnagar Maharashtra

    Google Scholar 

  • Doornbos RF, Van Loon LC, Bakker PAHM (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32(1):227–243

    Article  Google Scholar 

  • Duponnois R, Paugy M, Thioulouse J, Masse D, Lepage M (2005) Functional diversity of soil microbial community, rock phosphate dissolution and growth of Acacia seyal as influenced by grass-, litter- and soil-feeding termite nest structure amendments. Geoderma 124(3):349–361

    Article  CAS  Google Scholar 

  • Duponnois R, Kisa M, Assigbetse K et al (2006) Fluorescent pseudomonads occuring in Macrotermes subhyalinus mound structures decrease cd toxicity and improve its accumulation in sorghum plants. Sci Total Environ 370(2):391–400

    Article  CAS  PubMed  Google Scholar 

  • Ercolini D (2013) High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. App Environ Microbiol 79(10):3148–3155

    Article  CAS  Google Scholar 

  • Fall S, Hamelin J, Ndiaye F et al (2007) Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds. Appl Environ Microbiol 73(16):5199–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs R, Schafer M, Geoffroy V, Meyer J-M (2001) Siderotyping a powerful tool for the characterization of pyoverdines. Curr Top Med Chem 1(1):31–57

    Article  CAS  PubMed  Google Scholar 

  • Garba M, Cornelis WM, Steppe K (2011) Effect of termite mound material on the physical properties of sandy soil and on the growth characteristics of tomato (Solanum lycopersicum L.) in semi-arid Niger. Plant Soil 338(1):451–466

    Article  CAS  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94(12):2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongoh Y (2010) Diversity and genomes of uncultured microbial symbionts in the termite gut. Biosci Biotechnol Biochem 74(6):1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101(12):4871–4881

    Article  CAS  PubMed  Google Scholar 

  • Igiehon NO, Babalola OO (2018) Rhizosphere microbiome modulators: contributions of nitrogen fixing bacteria towards sustainable agriculture. Int J Envi Res Pub Health 15(4):574

    Article  CAS  Google Scholar 

  • Istina IN, Widiastuti H, Joy B, Antralina M (2015) Phosphate-solubilizing microbe from Saprists peat soil and their potency to enhance oil palm growth and P uptake. Proc Food Sci 3:426–435

    Article  Google Scholar 

  • Jouquet P, Guilleux N, Shanbhag RR, Subramanian S (2015) Influence of soil type on the properties of termite mound nests in southern India. Appl Soil Ecol 96:282–287

    Article  Google Scholar 

  • Khare E, Arora NK (2010) Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr Microbiol 61(1):64–68

    Article  CAS  PubMed  Google Scholar 

  • Koeck DE, Pechtl A, Zverlov VV, Schwarz WH (2014) Genomics of cellulolytic bacteria. Curr Opin Biotechnol 29:171–183

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Tilak M, Sivakumar K, Saranya K (2018) Studies on the assessment of major nutrients and microbial population of termite mound soil. Int J For Crop Improvement 9(1):13–17

    Article  Google Scholar 

  • Li J, Y-t L, Yang X-d, J-j Z, Lin Z-a, B-q Z (2015) Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. J Integ Agric 14(12):2500–2511

    Article  CAS  Google Scholar 

  • Liu K, McInroy JA, Hu C-H, Kloepper JW (2018) Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Dis 102(1):67–72

    Article  PubMed  Google Scholar 

  • López-Hernández D (2001) Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco llanos (Venezuela). Soil Biol Biochem 33(6):747–753

    Article  Google Scholar 

  • Mahdi SS, Hassan G, Samoon S, Rather H, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytopathol 2(10)

  • Makonde HM, Mwirichia R, Osiemo Z, Boga HI, Klenk HP (2015) 454 pyrosequencing-based assessment of bacterial diversity and community structure in termite guts, mounds and surrounding soils. SpringerPlus 4:471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malusá E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98(15):6599–6607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manjula A, Sathyavathi S, Pushpanathan M, Gunasekaran P, Rajendhran J (2014) Microbial diversity in termite nest. Curr Sci 106(10):1430–1434

    Google Scholar 

  • Manjula A, Pushpanathan M, Sathyavathi S, Gunasekaran P, Rajendhran J (2016) Comparative analysis of microbial diversity in termite gut and termite nest using ion sequencing. Curr Microbiol 72:267–275

    CAS  PubMed  Google Scholar 

  • Mathew GM, Ju Y-M, Lai C-Y, Mathew DC, Huang CC (2012) Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists. FEMS Microb Ecol 79(2):504–517

    Article  CAS  Google Scholar 

  • Menichetti L, Landi L, Nannipieri P, Katterer T, Kirchmann H, Renella G (2014) Chemical properties and biochemical activity of colonized and abandoned litter-feeding termite (Macrotermes spp.) mounds in chromic Cambisol area on the Borana plateau, Ethiopia. Pedosphere 24(3):399–407

    Article  CAS  Google Scholar 

  • Millet YA, Danna CH, Clay NK et al (2010) Innate immune responses activated in arabidopsis roots by microbe-associated molecular patterns. Plant Cell 22(3):973–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagawa S, Koyama Y, Kokubo M et al (2011) Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos. J Ethnobiol Ethnomed 7(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  • Mujinya B, Mees F, Erens H et al (2013) Clay composition and properties in termite mounds of the Lubumbashi area, DR Congo. Geoderma 192:304–315

    Article  CAS  Google Scholar 

  • Negassa W, Sileshi GW (2018) Integrated soil fertility management reduces termite damage to crops on degraded soils in Western Ethiopia. Agric Ecosyst Environ 251:124–131

    Article  Google Scholar 

  • Nithyatharani R, Kavitha US (2018) Termite soil as bio-indicator of soil fertility. Int J Res Appl Sci Engr Tech 6(1):659–661

    Article  Google Scholar 

  • Ntambo R, Boga H, Muigai A, Mwirichia R (2010) Isolation and characterization of bacteria isolates from soil feeding termites and soil from Juja and Kakamega forest in Kenya. In: scientific technological and industrialization conference. Digital Repository

  • Ogedegbe A, Ogwu B (2015) Termite infestation on farmlands at Ugoniyekorhionmwon community, Edo state, Nigeria: a farmers' perception. Int J Pure Appl Sci Tech 28(1):8

    Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33(11):197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parewa HP, Meena VS, Jain LK, Choudhary A (2018) Sustainable crop production and soil health management through plant growth-promoting rhizobacteria role of rhizospheric microbes in soil. Springer, Singapore, pp 299–329

    Google Scholar 

  • Pathak J, Rajneesh MPK, Singh SP, Häder D-P, Sinha RP (2018) Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Front Environ Sci 6(7)

  • Paul J, Varma A (1993) Characterization of cellulose and hemicellulose degrading Bacillus sp. from termite infested soil. Curr Sci 64(4):262–266

  • Rosengaus RB, Zecher CN, Schultheis KF, Brucker RM, Bordenstein SR (2011) Disruption of the termite gut microbiota and its prolonged consequences for fitness. Appl Environ Microbiol 77(13):4303–4312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez PA (2010) Tripling crop yields in tropical Africa. Nat Geosci 3(5):299

    Article  CAS  Google Scholar 

  • Santos VB, Araújo AS, Leite LF, Nunes LA, Melo WJ (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231

    Article  CAS  Google Scholar 

  • Sarkar A (1991) Isolation and characterization of thermophilic, alkaliphilic, cellulose-degrading Bacillus thermoalcaliphilus sp. nov. from termite (Odontotermes obesus) mound soil of a semiarid area. Geomicrobiol J 9(4):225–232. https://doi.org/10.1080/01490459109386001

    Article  CAS  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev 3(1):73

    Article  Google Scholar 

  • Sexana S, Bahadur J, Varma A (1993) Cellulose and hemi-cellulose degrading bacteria from termite gut and mound soils of India. Int J Micro 33(1):55–60

    Google Scholar 

  • Sileshi GW, Arshad M, Konaté S, Nkunika PO (2010) Termite-induced heterogeneity in African savanna vegetation: mechanisms and patterns. J Veg Sci 21(5):923–937

    Article  Google Scholar 

  • Sujada N, Sungthong R, Lumyong S (2014) Termite nests as an abundant source of cultivable actinobacteria for biotechnological purposes. Microbes Environ 29(2):211–219

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki S, Noble AD, Ruaysoongnern S, Chinabut N (2007) Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand. Arid Land Res Mgt 21(1):37–49

    Article  Google Scholar 

  • Vidyashree AS, Kalleshwaraswamy CM, Mahadeva swamy HM, Asokan R, Adarsha SK (2018) Morphological, molecular identification and phylogenetic analysis of termites from Western Ghats of Karnataka, India. J Asia-Pac Entomol 21(1):140–149

    Article  Google Scholar 

  • Watson J (1977) The use of mounds of the termite Macrotermes falciger (Gerstäcker) as a soil amendment. Eur J Soil Sci 28(4):664–672

    Article  CAS  Google Scholar 

  • Widmer TL (2014) Screening Trichoderma species for biological control activity against phytophthora ramorum in soil. Biol Control 79:43–48

    Article  Google Scholar 

  • Zhu L-x, Xiao Q, Shen Y-f, S-q L (2017) Microbial functional diversity responses to 2 years since biochar application in silt-loam soils on the loess plateau. Ecotox Environ Saf 144:578–584

    Article  CAS  Google Scholar 

Download references

Funding

Support to B.J.E.’s Doctoral program was provided by the South Africa’s National Research Foundation/The World Academy of Science African Renaissance grant (UID110909). The National Research Foundation, South Africa for the grant (UID81192) provided support to O.O.B. that has supported research in her lab.

Author information

Authors and Affiliations

Authors

Contributions

B.J.E. wrote the first draft. O.O.B. provided the academic input and thoroughly critiqued the article. Both authors approved the article for publication.

Corresponding author

Correspondence to Olubukola Oluranti Babalola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enagbonma, B.J., Babalola, O.O. Potentials of termite mound soil bacteria in ecosystem engineering for sustainable agriculture. Ann Microbiol 69, 211–219 (2019). https://doi.org/10.1007/s13213-019-1439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-019-1439-2

Keywords

Navigation