Skip to main content
Log in

Genomic analysis of type strain Paenibacillus aceti L14T, a highly efficient producer of pyrazines

  • Short Communication
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Paenibacillus aceti L14T (CGMCC 1.15420 = JCM 31170) is a novel species isolated from the solid-state acetic acid fermentation culture of traditional Chinese vinegar. The strain is able to biosynthesize the pyrazines, including 2,3-diisobutylpyrazine, 2-isobutyl-3-methylpyrazine and 1-(5-isobutyl-2-pyrazinyl)-1-propanone. Genome sequencing of L14 was performed to gain insights into the genetic elements involved in the biosynthesis of pyrazines. The genome of L14 contains 5,611,962 bp with a GC content of 47.92 mol%, 5147 protein coding genes, 92 tRNAs, 20 rRNAs and four sRNAs. The strain L14 also contains complete biosynthetic pathways of valine, leucine and isoleucine, and contains genes for encoding threonine dehydratase and ketol-acid reductoisomerase. This genome sequence provides a basis for elucidating the possible mechanism for the biosynthesis of pyrazines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (ash, farrow, Wallbanks and Collins) using a PCR probe test. Anton Leeuw Int J G 64:253–260

    Article  CAS  Google Scholar 

  • Beck HC, Hansen AM, Lauritsen FR (2003) Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiol Lett 220:67–73

    Article  CAS  PubMed  Google Scholar 

  • Besemer J, Lomsadze A, Borodovsky M (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29:2607–2618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng TB, Reineccius GA, Bjorklund JA, Leete E (1991) Biosynthesis of 2-methoxy-3-isopropylpyrazine in pseudomonas perolens. J Agric Food Chem 39:1009–1012

    Article  CAS  Google Scholar 

  • Dickschat JS, Wickel S, Bolten CJ, Nawrath T, Schulz S, Wittmann C (2010) Pyrazine biosynthesis in Corynebacterium glutamicum. Eur J Org Chem 2010:2687–2695

    Article  Google Scholar 

  • Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37:D136–D140

    Article  CAS  PubMed  Google Scholar 

  • Lagesen K, Hallin P, Rødland EA, Stærfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Lin W, Liu X, Li S, Luo L, Lin W-T (2016a) Paenibacillus aceti sp. nov., isolated from the traditional solid-state acetic acid fermentation culture of Chinese cereal vinegar. Int J Syst Evol Microbiol 66:3426–3431

    Article  PubMed  Google Scholar 

  • Li S, Li P, Liu X, Luo L, Lin W (2016b) Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar. Appl Microbiol Biotechnol 100:4395–4411

    Article  CAS  PubMed  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu S-M, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam T-W, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray KE, Whitfield FB (1975) The occurrence of 3-alkyl-2-methoxypyrazines in raw vegetables. J Sci Food Agric 26:973–986

    Article  CAS  Google Scholar 

  • Xie J-B, Du Z, Bai L, Tian C, Zhang Y, Xie J-Y, Wang T, Liu X, Chen X, Cheng Q, Chen S (2014) Comparative genomic analysis of N 2-fixing and non-N 2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes. PLoS Genet 10:e1004231

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang Z-T, Yu H-M, Ma Y (2013) Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. Int J Syst Evol Microbiol 63:1776–1781

    Article  CAS  PubMed  Google Scholar 

  • Zhu B-F, Xu Y (2010) A feeding strategy for tetramethylpyrazine production by Bacillus subtilis based on the stimulating effect of ammonium phosphate. Bioprocess Biosyst Eng 33:953–959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (grant no. 31271924).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin Luo or Bing Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Gan, X., Luo, L. et al. Genomic analysis of type strain Paenibacillus aceti L14T, a highly efficient producer of pyrazines. Ann Microbiol 67, 391–393 (2017). https://doi.org/10.1007/s13213-017-1267-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-017-1267-1

Keywords

Navigation