Skip to main content
Log in

Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Cancer is a universal disease with a high mortality rate and caused by an uncontrolled growth of abnormal cells. Each cancer has its unique molecular change such as up/down-regulations of biological molecules in cancer cells. These biological molecules have been identified as biomarkers and used as a target analyte for cancer diagnosis. Since the level of cancer biomarkers is very insufficient at an early stage cancer, there is a need for technological advances that can be more accurate, ultra-sensitive, trustworthy, and selective to biomarkers. This review summarizes evaluation methods and recent advances in electrochemical and optical (fluorescent and colorimetric) biosensors to detect various cancer biomarkers as molecular targets. Electrochemical methods demonstrate rapid and ultra-sensitive detection of cancer biomarkers. And, fluorescent biosensors present improved target detection sensitivity by signal amplification strategy as well as provide the possibility to sense multiple biomarker targets with multiple fluorescent probes. Colorimetric biosensors easily and quickly detect cancer biomarkers by the naked eye for use as a point-of-care testing (POCT) platform. These biosensors can be further improved by understanding the complication of cancer cells and the molecular alterations in cancer progression for early diagnosis of cancer and patient prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Copyright 2021, Elsevier. b CV response of BSA/anti-ANXA2/f-MWCNT/ITO immunoelectrode as a function of ANXA2 concentration (0–60 ng/mL). Reprinted with permission from [45]. Copyright 2021, Elsevier. c Fabrication of polymer PThiEpx-modified ITO immunosensor for detection of IL 1α cancer biomarker. Reprinted with permission from [46]. Copyright 2019, Elsevier. d CV response of polymer PThiEpx-modified ITO immunosensor after incubation with different concentrations of IL 1α (0.01–5.5 pg/mL). Reprinted with permission from [46]. Copyright 2019, Elsevier. e Competitive electrochemical immunosensor based on DA/MUC-1/fMWCNTs probe and MUC-1 antibody-modified gelatin working electrode for detection of MUC-1, a breast cancer biomarker. Reprinted with permission from [47]. Copyright 2021, Elsevier. f CV response of competitive electrochemical immunosensor with different concentrations of MUC-1 (0.05–940 U/mL). Reprinted with permission from [47]. Copyright 2021, Elsevier

Fig. 4

Copyright 2022, American Chemical Society. b DPV response of BSA/anti-CD44/GO-IL-AuNPs/GCE working electrode depending on different concentrations of CD44 antigen (100 fg/mL–50 μg/mL). Reprinted with permission from [52]. Copyright 2022, American Chemical Society. c Anti-PSMA antibody (a-PSMA)/Cys-AuNP/SPGE electrochemical immunosensor for detection of PSMA prostate cancer biomarker. Reprinted with permission from [53]. Copyright 2022, Elsevier. d DPV response of a-PSMA/Cys-AuNP/SPGE working electrode as a function of PSMA concentration (0–250 ng/mL). Reprinted with permission from [53]. Copyright 2022, Elsevier. e AuNPs@NIPAm-co-AAc microgel-modified electrodes for detection of miRNA-21 as a breast cancer biomarker. Reprinted with permission from [54]. Copyright 2022, Elsevier. f DPV response of AuNPs@NIPAm-co-AAc microgel electrode for various miRNA-21 contents (0–1 pM). Reprinted with permission from [54]. Copyright 2022, Elsevier

Fig. 5

Copyright 2022, Elsevier. b SWV response of magnetogenosensor with different concentrations of miRNA-203 (0–500 fmol/L). Reprinted with permission from [61]. Copyright 2022, Elsevier. c Electrochemical immunosensor based on gold nanostructured electrode and SWV measurement of a HRP label for blood cancer biomarker (PHB2) detection. Reprinted with permission from [62]. Copyright 2022, Elsevier. d SWV response of HRP-labeled immunosensor as a function of PHB2 (0–50 ng/mL). Reprinted with permission from [62]. Copyright 2022, Elsevier. e SWV electrochemical biosensor (Phage/AuNPs/WS2QDs/GCE) for detection of c-Met, colon cancer biomarker. Reprinted with permission from [63]. Copyright 2022, BioMed Central. f SWV response of Phage-AuNPs-WS2QDs-GCE sensor depending on the concentration of c-Met (1–1000 pg/mL). Reprinted with permission from [63]. Copyright 2022, BioMed Central

Fig. 6

Copyright 2019, ACS Publications. b Impedance response of EIS sensing platform as a function of PCA3 concentration (10–16–10–6 mol/L). Reprinted with permission from [69]. Copyright 2019, ACS Publications. c EIS electrochemical aptasensor ([Fe(CN)6]3−/4−/CEA-A/AuNPs/graphene working electrode) for detection of CEA, lung cancer biomarker. Reprinted with permission from [70]. Copyright 2021, FRONTIERS MEDIA SA. d Impedance response of aptasensor depending on the concentration of CEA (0.2–15.0 ng/mL) Reprinted with permission from [70]. Copyright 2021, FRONTIERS MEDIA SA. e EIS biosensor based on a specific enzyme substrate (F6P) for detection of RmPGI, a protein model of AMF cancer biomarker. Reprinted with permission from [71]. Copyright 2017, Elsevier. f Nyquist plots of EIS sensing system after interaction with various concentrations of RmPGI (10 pM–100 nM). Reprinted with permission from [71]. Copyright 2017, Elsevier

Fig. 7

Copyright 2017, Elsevier. b Detection of ovarian cancer biomarker HE4 using graphene quantum dot (GQD) FRET sensor. Reprinted with permission from [85]. Copyright 2021, Elsevier. c Detection mechanism of two breast cancer biomarkers (miR-593 and miR-155) based on the FRET effect between UCNPs and MoS2 nanosheets. Reprinted with permission from [86]. Copyright 2021, Elsevier. d FRET-based DNA nanoprobe using smartphone RGB camera for detection of nucleic acids encoding anti-apoptotic cancer biomarker survivin. Reprinted with permission from [87]. Copyright 2020, Elsevier

Fig. 8

Copyright 2018, Elsevier. b IFE-based PL sensing system for detection of sarcosine, a biomarker of prostate cancer. Reprinted with permission from [91]. Copyright 2022, Elsevier. c IFE-based CdTe/CdS QD fluorescent probe for detection of ALP as breast, gastric, and prostate cancer biomarkers. Reprinted with permission from [92]. Copyright 2019, Elsevier

Fig. 9

Copyright 2021, Royal Society of Chemistry. b PET-based H2L “turn-on” fluorescence sensor for detection of Zn2+, an early prostate cancer biomarker. Reprinted with permission from [98]. Copyright 2020, Elsevier. c Nanozyme PET sensor array based on aptamer-modified C3N4 nanosheets (Apt/C3N4 NSs) and solvent-mediated signal amplification for detection of cancer-derived exosomes. Reprinted with permission from [99]. Copyright 2020, ACS Publications

Fig. 10

Copyright 2020, Royal Society of Chemistry. b Colorimetric aptasensor based on PDDA-induced aggregation of AuNPs for prostate cancer biomarker (PSA) detection. Reprinted with permission from [107]. Copyright 2020, Elsevier. c AuNPs-based colorimetric aptasensor to diagnose ovarian cancer biomarker (PDGF) under high salt conditions. Reprinted with permission from [108]. Copyright 2022, Elsevier

Fig. 11

Copyright 2020, Elsevier. b Colorimetric detection of breast and prostate cancer biomarker ALP based on pAP-mediated growth of AgNPs. Reprinted with permission from [110]. Copyright 2021, Elsevier. c Colorimetric detection of liver cancer biomarker AFP by Nb-ALP and MnO2 nanoflakes in an enzyme cascade-amplified immunoassay (ECAIA). Reprinted with permission from [112]. Copyright 2021, Elsevier

Fig. 12

Copyright 2020, Elsevier. b Imidazolium group-functionalized PDA colorimetric sensor to detect expression level of phospholipase D as tumor biomarker. Reprinted with permission from [114]. Copyright 2019, Elsevier

Fig. 13

Copyright 2020, Elsevier. b Paper-based Cys-AuNC colorimetric sensor with peroxidase-like activity for detection of citrate as a biomarker of prostate cancer. Reprinted with permission from [119]. Copyright 2019, Elsevier. c Aptamer-based colorimetric LFA for detection of HER2 as a breast cancer biomarker using the adsorption–desorption mechanism. Reprinted with permission from [122]. Copyright 2020, Elsevier

Similar content being viewed by others

References

  1. Crulhas, B.P., Basso, C.R., Castro, G.R., Pedrosa, V.A.: Recent advances based on a sensor for cancer biomarker detection. ECS J. Solid State Sci. Technol. 10, 047004 (2021)

    Article  CAS  Google Scholar 

  2. Hayes, B., Murphy, C., Crawley, A., O’Kennedy, R.: Developments in point-of-care diagnostic technology for cancer detection. Diagnostics 8, 39 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xia, C., Dong, X., Li, H., Cao, M., Sun, D., He, S., Yang, F., Yan, X., Zhang, S., Li, N., Chen, W.: Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin. Med. J. 135, 584–590 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alharthi, S.D., Bijukumar, D., Prasad, S., Khan, A.M., Mathew, M.T.: Evolution in biosensors for cancers biomarkers detection: a review. J. Bio Tribo-Corrosion 7, 1–17 (2021)

    Article  Google Scholar 

  5. Cui, F., Zhou, Z., Zhou, H.S.: Measurement and analysis of cancer biomarkers based on electrochemical biosensors. J. Electrochem. Soc. 167, 037525 (2019)

    Article  Google Scholar 

  6. Henry, N.L., Hayes, D.F.: Cancer biomarkers. Mol. Oncol. 6, 140–146 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goossens, N., Nakagawa, S., Sun, X., Hoshida, Y.: Cancer biomarker discovery and validation. Transl. Cancer Res. 4, 256 (2015)

    CAS  PubMed  Google Scholar 

  8. Seale, K.N., Tkaczuk, K.H.R.: Circulating biomarkers in breast cancer. Clin. Breast Cancer 22, e319–e331 (2021)

    Article  PubMed  Google Scholar 

  9. Topkaya, S.N., Azimzadeh, M., Ozsoz, M.: Electrochemical biosensors for cancer biomarkers detection: Recent advances and challenges. Electroanalysis 28, 1402–1419 (2016)

    Article  CAS  Google Scholar 

  10. Behne, T., Copur, M.S.: Biomarkers for hepatocellular carcinoma. Int. J. Hepatol. 2012, 1–7 (2012)

    Article  Google Scholar 

  11. Guo, L., Song, B., Xiao, J., Lin, H., Chen, J., Su, X.: The prognostic value of biomarkers on detecting non-small cell lung cancer in a Chinese elderly population. Int. J. Gen. Med. 14, 5279 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shahbazi, N., Zare-Dorabei, R., Naghib, S.M.: Design of a ratiometric plasmonic biosensor for herceptin detection in HER2-positive breast cancer. ACS Biomater. Sci. Eng. 8, 871–879 (2022)

    Article  CAS  PubMed  Google Scholar 

  13. Wu, J., Zhou, X., Li, P., Lin, X., Wang, J., Hu, Z., Zhang, P., Chen, D., Cai, H., Niessner, R., Haisch, C., Sun, P., Zheng, Y., Jiang, Z., Zhou, H.: Ultrasensitive and simultaneous SERS detection of multiplex microRNA using fractal gold nanotags for early diagnosis and prognosis of hepatocellular carcinoma. Anal. Chem. 93, 8799–8809 (2021)

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, N., Li, G., Zhou, J., Zhang, Y., Kang, K., Ying, B., Yi, Q., Wu, Y.: A light-up fluorescence resonance energy transfer magnetic aptamer-sensor for ultra-sensitive lung cancer exosome detection. J. Mater. Chem. B 9, 2483–2493 (2021)

    Article  CAS  PubMed  Google Scholar 

  15. Wang, X., Liao, X., Mei, L., Zhang, M., Chen, S., Qiao, X., Hong, C.: An immunosensor using functionalized Cu2O/Pt NPs as the signal probe for rapid and highly sensitive CEA detection with colorimetry and electrochemistry dual modes. Sens. Actuator B-Chem. 341, 130032 (2021)

    Article  CAS  Google Scholar 

  16. Feng, D., Su, J., Xu, Y., He, G., Wang, C., Wang, X., Pan, T., Ding, X., Mi, X.: DNA tetrahedron-mediated immune-sandwich assay for rapid and sensitive detection of PSA through a microfluidic electrochemical detection system. Microsyst. Nanoeng. 7, 1–10 (2021)

    Article  CAS  Google Scholar 

  17. Han, C., Chen, R., Wu, X., Shi, N., Duan, T., Xu, K., Huang, T.: Fluorescence turn-on immunosensing of HE4 biomarker and ovarian cancer cells based on target-triggered metal-enhanced fluorescence of carbon dots. Anal. Chim. Acta 1187, 339160 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. Khanmohammadi, A., Aghaie, A., Vahedi, E., Qazvini, A., Ghanei, M., Afkhami, A., Hajian, A., Bagheri, H.: Electrochemical biosensors for the detection of lung cancer biomarkers: a review. Talanta 206, 120251 (2020)

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, Y., Li, M., Gao, X., Chen, Y., Liu, T.: Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J. Hematol. Oncol. 12, 1–13 (2019)

    Article  Google Scholar 

  20. Kadakia, K.C., Hui, D., Chisholm, G.B., Frisbee-Hume, S.E., Williams, J.L., Bruera, E.: Cancer patients’ perceptions regarding the value of the physical examination: a survey study. Cancer 120, 2215–2221 (2014)

    Article  PubMed  Google Scholar 

  21. Zubor, P., Kubatka, P., Kapustova, I., Miloseva, L., Dankova, Z., Gondova, A., Bielik, T., Krivus, S., Bujnak, J., Laucekova, Z., Kehrer, C., Kudela, E., Danko, J.: Current approaches in the clinical management of pregnancy-associated breast cancer—pros and cons. EPMA J. 9, 257–270 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yeasmin, S., Ammanath, G., Ali, Y., Boehm, B.O., Yildiz, U.H., Palaniappan, A., Liedberg, B.: Colorimetric urinalysis for on-site detection of metabolic biomarkers. ACS Appl. Mater. Interfaces 12, 31270–31281 (2020)

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, Z., Liu, J., Cheng, Y., Chen, J., Zhao, H., Ren, X.: Urine analysis has a very broad prospect in the future. Front. Anal. Sci. (2022). https://doi.org/10.3389/frans.2021.812301

    Article  Google Scholar 

  24. Mwesige, B., Yeo, S.G., Yoo, B.C.: Circulating tumor cells: liquid biopsy for early detection of cancer. Soonchunhyang Med. Sci. 25, 1–9 (2019)

    Article  Google Scholar 

  25. de Vries, M., Jager, P.L., Suurmeijer, A.J., Plukker, J.T., van Ginkel, R.J., Hoekstra, H.J.: Sentinel lymph node biopsy for melanoma: prognostic value and disadvantages in 300 patients. Ned. Tijdschr. Geneeskd 149, 1845–1851 (2005)

    PubMed  Google Scholar 

  26. Wang, L.: Screening and biosensor-based approaches for lung cancer detection. Sensors 17, 2420 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Altintas, Z., Tothill, I.: Biomarkers and biosensors for the early diagnosis of lung cancer. Sens. Actuator B-Chem. 188, 988–998 (2013)

    Article  CAS  Google Scholar 

  28. Zhang, X., Yao, B., Hu, Q., Hong, Y., Wallace, A., Reynolds, K., Ramsey, C., Maeder, A., Reed, R., Tang, Y.: Detection of biomarkers in body fluids using bioprobes based on aggregation-induced emission fluorogens. Mat. Chem. Front. 4, 2548–2570 (2020)

    Article  CAS  Google Scholar 

  29. Kwon, E.J.: Synthetic Biomarkers for Cancer Detection and Diagnosis. National Academy of Engineering. Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2018 Symposium. Washington (DC): National Academies Press (US) (2019)

  30. Damborský, P., Švitel, J., Katrlík, J.: Optical biosensors. Essays Biochem. 60, 91–100 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen, Y.T., Lee, Y.C., Lai, Y.H., Lim, J.C., Huang, N.T., Lin, C.T., Huang, J.J.: Review of integrated optical biosensors for point-of-care applications. Biosensors 10, 209 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, H., Qi, H., Chang, J., Gai, P., Li, F.: Recent progress in homogeneous electrochemical sensors and their designs and applications. Trac-Trends Anal. Chem. 156, 116712 (2022)

    Article  CAS  Google Scholar 

  33. Pacheco, J.G., Rebelo, P., Freitas, M., Nouws, H.P., Delerue-Matos, C.: Breast cancer biomarker (HER2-ECD) detection using a molecularly imprinted electrochemical sensor. Sens. Actuator B-Chem. 273, 1008–1014 (2018)

    Article  CAS  Google Scholar 

  34. Nisiewicz, M.K., Kowalczyk, A., Gajda, A., Kasprzak, A., Bamburowicz-Klimkowska, M., Grudzinski, I.P., Nowicka, A.M.: Enzymatic cleavage of specific dipeptide conjugated with ferrocene as a flexible ultra-sensitive and fast voltammetric assay of matrix metalloproteinase-9 considered a prognostic cancer biomarker in plasma samples. Biosens. Bioelectron. 195, 113653 (2022)

    Article  CAS  PubMed  Google Scholar 

  35. Nisiewicz, M.K., Gajda, A., Kowalczyk, A., Cupriak, A., Kasprzak, A., Bamburowicz-Klimkowska, M., Grudzinski, I.P., Nowicka, A.M.: Novel electrogravimetric biosensors for the ultrasensitive detection of plasma matrix metalloproteinase-2 considered a potential tumor biomarker. Anal. Chim. Acta 119, 339290 (2022)

    Article  Google Scholar 

  36. Yu, S., Wei, Q., Du, B., Wu, D., Li, H., Yan, L., Ma, H., Zhang, Y.: Label-free immunosensor for the detection of kanamycin using Ag@ Fe3O4 nanoparticles and thionine mixed graphene sheet. Biosens. Bioelectron. 48, 224–229 (2013)

    Article  CAS  PubMed  Google Scholar 

  37. Park, J.A., Seo, Y., Sohn, H., Park, C., Min, J., Lee, T.: Recent trends in biosensors based on electrochemical and optical techniques for cyanobacterial neurotoxin detection. Biochip J. 16, 146–157 (2022)

    Article  CAS  Google Scholar 

  38. Janegitz, B.C., Silva, T.A., Wong, A., Ribovski, L., Vicentini, F.C., Sotomayor, M.D.P.T., Fatibello-Filho, O.: The application of graphene for in vitro and in vivo electrochemical biosensing. Biosens. Bioelectron. 89, 224–233 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Liu, J., Xu, Y., Liu, S., Yu, S., Yu, Z., Low, S.S.: Application and progress of chemometrics in voltammetric biosensing. Biosensors 12, 494 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, S.C., Chen, K.T., Jou, A.F.J.: Polydopamine-gold composite-based electrochemical biosensor using dual-amplification strategy for detecting pancreatic cancer-associated microRNA. Biosens. Bioelectron. 173, 112815 (2021)

    Article  CAS  PubMed  Google Scholar 

  41. Chen, M., Li, Y., Han, R., Chen, Q., Jiang, L., Luo, X.: Click reaction-assisted construction of antifouling immunosensors for electrochemical detection of cancer biomarkers in human serum. Sens. Actuator B-Chem. 363, 131810 (2022)

    Article  CAS  Google Scholar 

  42. Kaya, S.I., Ozcelikay, G., Mollarasouli, F., Bakirhan, N.K., Ozkan, S.A.: Recent achievements and challenges on nanomaterial based electrochemical biosensors for the detection of colon and lung cancer biomarkers. Sens. Actuator B-Chem. 351, 130856 (2022)

    Article  CAS  Google Scholar 

  43. Barman, S.C., Sharifuzzaman, M., Zahed, M.A., Park, C., Yoon, S.H., Zhang, S., Kim, H., Yoon, H., Park, J.Y.: A highly selective and stable cationic polyelectrolyte encapsulated black phosphorene based impedimetric immunosensor for Interleukin-6 biomarker detection. Biosens. Bioelectron. 186, 113287 (2021)

    Article  Google Scholar 

  44. Chevion, S., Roberts, M.A., Chevion, M.: The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic. Biol. Med. 28, 860–870 (2000)

    Article  CAS  PubMed  Google Scholar 

  45. Chauhan, D., Chandra, R., Kumar, S.: Advanced electrochemical nanobiosensor for ultraefficient Annexin A2 biomarker detection: a rapid, label free and minimal invasive approach towards early diagnosis of liver cancer. Mater. Lett. 305, 130856 (2021)

    Article  CAS  Google Scholar 

  46. Aydın, M.: A sensitive and selective approach for detection of IL 1α cancer biomarker using disposable ITO electrode modified with epoxy-substituted polythiophene polymer. Biosens. Bioelectron. 144, 111675 (2019)

    Article  PubMed  Google Scholar 

  47. Rashid, S., Nawaz, M.H., ur Rehman, I., Hayat, A., Marty, J.L.: Dopamine/mucin-1 functionalized electro-active carbon nanotubes as a probe for direct competitive electrochemical immunosensing of breast cancer biomarker. Sens. Actuator B-Chem. 330, 129351 (2021)

    Article  CAS  Google Scholar 

  48. Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., Dempsey, J.L.: A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018)

    Article  CAS  Google Scholar 

  49. Chooto, P.: Cyclic voltammetry and its applications. In: Voltammetry, vol. 1. IntechOpen (2019)

  50. Schumm, B., Eagle Cliffs, I.N.C.: Carbon-zinc batteries. In: Encyclopedia of Applied Electrochemistry, pp. 149–152. (2014)

  51. Venton, B.J., Cao, Q.: Fundamentals of fast-scan cyclic voltammetry for dopamine detection. Analyst. 145, 1158–1168 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ranjan, P., Abubakar Sadique, M., Yadav, S., Khan, R.: An electrochemical immunosensor based on gold-graphene oxide nanocomposites with ionic liquid for detecting the breast cancer CD44 biomarker. ACS Appl. Mater. Interfaces 14, 20802–20812 (2022)

    Article  CAS  PubMed  Google Scholar 

  53. Madhu, S., Han, J.H., Jeong, C.W., Choi, J.A.: Disposable electrochemical immunosensor for prostate cancer detection. Sens. Actuator B-Chem. 360, 131667 (2022)

    Article  Google Scholar 

  54. Hou, Z., Zheng, J., Zhang, C., Li, T., Chen, D., Hu, L., Hu, J., Xiong, B., Ye, H., Jaffrezic-Renault, N., Guo, Z.: Direct ultrasensitive electrochemical detection of breast cancer biomarker-miRNA-21 employing an aptasensor based on a microgel nanoparticle composite. Sens. Actuator B-Chem. 367, 132067 (2022)

    Article  CAS  Google Scholar 

  55. Islam, M.N., Channon, R.B.: Electrochemical sensors. In: Bioengineering Innovative Solutions for Cancer, pp. 47–71. (2020)

  56. Kashyap, B., Kumar, R.: A novel multi-set differential pulse voltammetry technique for improving precision in electrochemical sensing. Biosens. Bioelectron. 216, 114628 (2022)

    Article  CAS  PubMed  Google Scholar 

  57. Jin, H., Gui, R., Yu, J., Lv, W., Wang, Z.: Fabrication strategies, sensing modes and analytical applications of ratiometric electrochemical biosensors. Biosens. Bioelectron. 91, 523–537 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. Ramaley, L., Krause, M.S.: Theory of square wave voltammetry. Anal. Chem. 41, 1362–1365 (1969)

    Article  CAS  Google Scholar 

  59. Mirceski, V., Gulaboski, R., Lovric, M., Bogeski, I., Kappl, R., Hoth, M.: Square-wave voltammetry: a review on the recent progress. Electroanalysis 25, 2411–2422 (2013)

    Article  CAS  Google Scholar 

  60. Go, W.S., O’Dea, J.J., Osteryoung, J.: Square wave voltammetry for the determination of kinetic parameters: The reduction of zinc (II) at mercury electrodes. J. Electroanal. Chem. Interfacial Electrochem. 255, 21–44 (1988)

    Article  CAS  Google Scholar 

  61. Fonseca, W.T., Cincotto, F.H., Lourencao, B.C., de Almeida, S.V., Moraes, F.C., Fatibello-Filho, O., de Carvalho, A.C., Carvalho, A.L., Melendez, M.E., Faria, R.C.: Ultrasensitive magnetogenoassay for detection of microRNA for diagnosis of metastatic lymph nodes in head and neck cancer using disposable electrodes. Sens. Actuator B-Chem. 352, 131040 (2022)

    Article  CAS  Google Scholar 

  62. Yun, Y.R., Lee, S.Y., Seo, B., Kim, H., Shin, M.G., Yang, S.: Sensitive electrochemical immunosensor to detect prohibitin 2, a potential blood cancer biomarker. Talanta 238, 123053 (2022)

    Article  CAS  PubMed  Google Scholar 

  63. Pourakbari, R., Yousefi, M., Khalilzadeh, B., Irani-nezhad, M.H., Khataee, A., Aghebati-Maleki, L., Soleimanian, A., Kamrani, A., Chakari-Khiavi, F., Abolhasan, R., Motallebnezhad, M., Jadidi-Niaragh, F., Yousefi, B., Kafil, H.S., Hojjat-Farsangi, M., Rashidi, M.R.: Early stage evaluation of colon cancer using tungsten disulfide quantum dots and bacteriophage nano-biocomposite as an efficient electrochemical platform. Cancer Nanotechnol. 13, 1–17 (2022)

    Article  Google Scholar 

  64. Wang, J., Chen, F., Guo, Q., Meng, Y., Jiang, M., Wu, C., Zhuang, J., Zhang, D.W.: Light-addressable squarewave voltammetry (LASWV) based on a field-effect structure for electrochemical sensing and imaging. ACS Sens. 6, 1636–1642 (2021)

    Article  CAS  PubMed  Google Scholar 

  65. Talian, S.D., Moskon, J., Dominko, R., Gaberscek, M.: The pitfalls and opportunities of impedance spectroscopy of lithium silfur batteries. Adv. Mater. Interfaces. 9, 2101116 (2022)

    Article  Google Scholar 

  66. Kim, J., Noh, S., Park, J.A., Park, S.C., Park, S.J., Lee, J.H., Ahn, J.H., Lee, T.: Recent advances in aptasensor for cytokine detection: a review. Sensors 21, 8491 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lim, T., Lee, S.Y., Yang, J., Hwang, S.Y., Ahn, Y.: Microfluidic biochips for simple impedimetric detection of thrombin based on label-free DNA aptamers. BioChip J. 11, 109–115 (2017)

    Article  CAS  Google Scholar 

  68. Fernandez, C.P., Uddin, K., Chouchelamane, G.H., Widanage, W.D., Marco, J.: A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems. J. Power Sources 360, 301–318 (2017)

    Article  Google Scholar 

  69. Soares, J.C., Soares, A.C., Rodrigues, V.C., Melendez, M.E., Santos, A.C., Faria, E.F., Reis, R.M., Carvalho, A.L., Oliveira, O.N., Jr.: Detection of the prostate cancer biomarker PCA3 with electrochemical and impedance-based biosensors. ACS Appl. Mater. Interfaces. 11, 46645–46650 (2019)

    Article  CAS  PubMed  Google Scholar 

  70. Wang, Y., Chen, L., Xuan, T., Wang, J., Wang, X.: Label-free electrochemical impedance spectroscopy aptasensor for utrasensitive detection of lung cancer biomarker carcinoembryonic antigen. Front. Chem. 9, 721008 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deviers, M., Ahmad, L., Youssoufi, H.K., Salmon, L.: Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma. Biosens. Bioelectron. 96, 178–185 (2017)

    Article  Google Scholar 

  72. Cheng, L., Jin, R., Jiang, D., Zhuang, J., Liao, X., Zheng, Q.: Scanning electrochemical cell microscopy platform with local electrochemical impedance spectroscopy. Anal. Chem. 93, 16401–16408 (2021)

    Article  CAS  PubMed  Google Scholar 

  73. Chang, B.Y., Park, S.M.: Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3, 207–229 (2010)

    Article  CAS  Google Scholar 

  74. Zhong, W.: Nanomaterials in fluorescence-based biosensing. Anal. Bioanal. Chem. 394, 47–59 (2009)

    Article  CAS  PubMed  Google Scholar 

  75. Ma, F., Li, Y., Tang, B., Zhang, C.Y.: Fluorescent biosensors based on single-molecule counting. Accounts Chem. Res. 49, 1722–1730 (2016)

    Article  CAS  Google Scholar 

  76. Zhao, X., Dai, X., Zhao, S., Cui, X., Gong, T., Song, Z., Meng, H., Zhang, X., Yu, B.: Aptamer-based fluorescent sensors for the detection of cancer biomarkers. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 247, 119038 (2021)

    Article  CAS  Google Scholar 

  77. Fu, Y., Finney, N.S.: Small-molecule fluorescent probes and their design. RSC Adv. 8, 29051–29061 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. He, L., Dong, B., Liu, Y., Lin, W.: Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem. Soc. Rev. 45, 6449–6461 (2016)

    Article  CAS  PubMed  Google Scholar 

  79. Bissell, R.A., Prasanna de Silva, A., Nimal Gunaratne, H.Q., Mark Lynch, P.L., Maguire, G.E., McCoy, C.P., Samankumara Sandanayake, K.R.A.: Fluorescent PET (photoinduced electron transfer) sensors. In: Photoinduced Electron Transfer V: Topics in Current Chemistry, vol. 168. Springer, Berlin (1993)

  80. Chen, S., Yu, Y.L., Wang, J.H.: Inner filter effect-based fluorescent sensing systems: a review. Anal. Chim. Acta 999, 13–26 (2018)

    Article  CAS  PubMed  Google Scholar 

  81. Sahoo, H.: Förster resonance energy transfer–A spectroscopic nanoruler: Principle and applications. J. Photochem. Photobiol. C-Photochem. Rev. 12, 20–30 (2011)

    Article  CAS  Google Scholar 

  82. Huy, B.T., Thangadurai, D.T., Sharipov, M., Nghia, N.N., Van Cuong, N., Lee, Y.I.: Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis-a mechanistic approach. Microchem. J. 179, 107511 (2022)

    Article  Google Scholar 

  83. Zhang, X., Hu, Y., Yang, X., Tang, Y., Han, S., Kang, A., Deng, H., Chi, Y., Zhu, D., Lu, Y.: FÖrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens. Bioelectron. 138, 111314 (2019)

    Article  CAS  PubMed  Google Scholar 

  84. Broussard, J.A., Green, K.J.: Research techniques made simple: methodology and applications of Förster resonance energy transfer (FRET) microscopy. J. Invest. Dermatol. 137, e185–e191 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bharathi, G., Lin, F., Liu, L., Ohulchanskyy, T.Y., Hu, R., Qu, J.: An all-graphene quantum dot förster resonance energy transfer (FRET) probe for ratiometric detection of HE4 ovarian cancer biomarker. Colloid Surf. B-Biointerfaces 198, 111458 (2021)

    Article  CAS  Google Scholar 

  86. Wu, X., Li, Y., Yang, M.Y., Mao, C.B.: Simultaneous ultrasensitive detection of two breast cancer microRNA biomarkers by using a dual nanoparticle/nanosheet fluorescence resonance energy transfer sensor. Mater. Today Adv. 12, 100163 (2021)

    Article  CAS  Google Scholar 

  87. Severi, C., Melnychuk, N., Klymchenko, A.S.: Smartphone-assisted detection of nucleic acids by light-harvesting FRET-based nanoprobe. Biosens. Bioelectron. 168, 112515 (2020)

    Article  CAS  PubMed  Google Scholar 

  88. Leavesley, S.J., Rich, T.C.: Overcoming limitations of FRET measurements. Cytom. Part J. Int. Soc. Anal. Cytol. 89, 325 (2016)

    Article  Google Scholar 

  89. Zhang, J., Zhou, R., Tang, D., Hou, X., Wu, P.: Optically-active nanocrystals for inner filter effect-based fluorescence sensing: achieving better spectral overlap. Trac-Trends Anal. Chem. 110, 183–190 (2019)

    Article  CAS  Google Scholar 

  90. Fonin, A.V., Sulatskaya, A.I., Kuznetsova, I.M., Turoverov, K.K.: Fluorescence of dyes in solutions with high absorbance. Inner filter effect correction. PLoS ONE 9, e103878 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lin, X., Tian, M., Cao, C., Shu, T., Wen, Y., Su, L., Zhang, X.: Using bimetallic Au/Cu nanoplatelets for construction of facile and label-free inner filter effect-based photoluminescence sensing platform for sarcosine detection. Anal. Chim. Acta 1192, 339331 (2022)

    Article  CAS  PubMed  Google Scholar 

  92. Mao, G., Zhang, Q., Yang, Y., Ji, X., He, Z.: Facile synthesis of stable CdTe/CdS QDs using dithiol as surface ligand for alkaline phosphatase detection based on inner filter effect. Anal. Chim. Acta 1047, 208–213 (2019)

    Article  CAS  PubMed  Google Scholar 

  93. Moura, S.L., Pallarès-Rusiñol, A., Sappia, L., Martí, M., Pividori, M.I.: The activity of alkaline phosphatase in breast cancer exosomes simplifies the biosensing design. Biosens. Bioelectron. 198, 113826 (2022)

    Article  CAS  PubMed  Google Scholar 

  94. Wang, Y., Xiong, F., Yang, J., Xia, T., Jia, Z., Shen, J., Xu, J., Feng Lu, Y.: Decreased albumin-to-alkaline phosphatase ratio predicted poor survival of resectable gastric cancer patients. J. Gastrointest. Oncol. 12, 1338 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  95. Li, D., Lv, H., Hao, X., Hu, B., Song, Y.: Prognostic value of serum alkaline phosphatase in the survival of prostate cancer: evidence from a meta-analysis. Cancer Manag. Res. 10, 3125 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tian, X., Murfin, L.C., Wu, L., Lewis, S.E., James, T.D.: Fluorescent small organic probes for biosensing. Chem. Sci. 12, 3406–3426 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gunnlaugsson, T., Davis, A.P., Glynn, M.: Fluorescent photoinduced electron transfer (PET) sensing of anions using charge neutral chemosensors. Chem. Commun. 24, 2556–2557 (2001)

    Article  Google Scholar 

  98. An, Y., Chang, W., Wang, W., Wu, H., Pu, K., Wu, A., Qin, Z., Tao, Y., Yue, Z., Wang, P., Wang, Z.: A novel tetrapeptide fluorescence sensor for early diagnosis of prostate cancer based on imaging Zn2+ in healthy versus cancerous cells. J. Adv. Res. 24, 363–370 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu, M.X., Zhang, H., Zhang, X.W., Chen, S., Yu, Y.L., Wang, J.H.: Nanozyme sensor array plus solvent-mediated signal amplification strategy for ultrasensitive ratiometric fluorescence detection of exosomal proteins and cancer identification. Anal. Chem. 93, 9002–9010 (2021)

    Article  CAS  PubMed  Google Scholar 

  100. LeBleu, V.S., Kalluri, R.: Exosomes as a multicomponent biomarker platform in cancer. Trends Cancer 6, 767–774 (2020)

    Article  CAS  PubMed  Google Scholar 

  101. Terai, T., Kikuchi, K., Iwasawa, S.Y., Kawabe, T., Hirata, Y., Urano, Y., Nagano, T.: Modulation of luminescence intensity of lanthanide complexes by photoinduced electron transfer and its application to a long-lived protease probe. J. Am. Chem. Soc. 128, 6938–6946 (2006)

    Article  CAS  PubMed  Google Scholar 

  102. Li, M., Fan, J., Du, J., Cao, J., Peng, X.: Inhibiting proton interference in PET chemosensors by tuning the HOMO energy of fluorophores. Sens. Actuators B Chem. 259, 626–632 (2018)

    Article  CAS  Google Scholar 

  103. Che Sulaiman, I.S., Chieng, B.W., Osman, M.J., Ong, K.K., Rashid, J.I.A., Wan Yunus, W.M.Z., Noor, S.A.M., Kasim, N.A.N., Halim, N.A., Mohamad, A.: A review on colorimetric methods for determination of organophosphate pesticides using gold and silver nanoparticles. Microchim. Acta 187, 1–22 (2020)

    Article  Google Scholar 

  104. Jayeoye, T.J., Cheewaswdtham, W., Putson, C., Rujiralai, T.: Colorimetric determination of sialic acid based on boronic acid-mediated aggregation of gold nanoparticles. Microchim. Acta 185, 1–8 (2018)

    Article  CAS  Google Scholar 

  105. Lou, U.K., Wong, C.H., Chen, Y.: A simple and rapid colorimetric detection of serum lncRNA biomarkers for diagnosis of pancreatic cancer. RSC Adv. 10, 8087–8092 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hakimian, F., Ghourchian, H., Hashemi, A.S., Arastoo, M.R., Rad, M.B.: Ultrasensitive optical biosensor for detection of miRNA-155 using positively charged Au nanoparticles. Sci Rep 8, 1–9 (2018)

    Article  CAS  Google Scholar 

  107. Shayesteh, O.H., Ghavami, H.: A novel label-free colorimetric aptasensor for sensitive determination of PSA biomarker using gold nanoparticles and a cationic polymer in human serum. Spectro. Acta Pt. A-Molec. Biomolec. Spectr. 226, 117644 (2020)

    Article  CAS  Google Scholar 

  108. Hasan, M.R., Sharma, P., Pilloton, R., Khanuja, M., Narang, J.: Colorimetric biosensor for the naked-eye detection of ovarian cancer biomarker PDGF using citrate modified gold nanoparticles. Biosens. Bioelectron-X 11, 100412 (2022)

    Google Scholar 

  109. Xu, L., Chopdat, R., Li, D., Al-Jamal, K.T.: Development of a simple, sensitive and selective colorimetric aptasensor for the detection of cancer-derived exosomes. Biosens. Bioelectron. 169, 112576 (2020)

    Article  CAS  PubMed  Google Scholar 

  110. Shaban, S.M., Moon, B.S., Pyun, D.G., Kim, D.H.: A colorimetric alkaline phosphatase biosensor based on p-aminophenol-mediated growth of silver nanoparticles. Colloid Surf. B-Biointerfaces 205, 111835 (2021)

    Article  CAS  Google Scholar 

  111. Liu, M.X., Zhang, H., Chen, S., Yu, Y.L., Wang, J.H.: MnO2-graphene oxide hybrid nanomaterial with oxidase-like activity for ultrasensitive colorimetric detection of cancer cells. Anal. Bioanal. Chem. 413, 4451–4458 (2021)

    Article  CAS  PubMed  Google Scholar 

  112. Su, B., Xu, H., Xie, G., Chen, Q., Sun, Z., Cao, H., Liu, X.: Generation of a nanobody-alkaline phosphatase fusion and its application in an enzyme cascade-amplified immunoassay for colorimetric detection of alpha fetoprotein in human serum. Spectro. Acta Pt. A-Molec. Biomolec. Spectr. 262, 120088 (2021)

    Article  CAS  Google Scholar 

  113. Hu, B., Wu, P.: An ultrathin polydiacetylene nanosheet as dual colorimetric and fluorescent indicator for lysophosphatidic acid, a cancer biomarker. Giant 3, 100025 (2020)

    Article  Google Scholar 

  114. Zhang, Z., Li, J., Wang, F., Wei, T., Chen, Y., Qiang, J., Xiao, T., Chen, X.: A polydiacetylenes-based sensor for the efficient detection of phospholipase D activity. Sens. Actuator B-Chem. 282, 636–643 (2019)

    Article  CAS  Google Scholar 

  115. Wang, L.X., Fu, J.J., Zhou, Y., Chen, G., Fang, C., Lu, Z.S., Yu, L.: On-chip RT-LAMP and colorimetric detection of the prostate cancer 3 biomarker with an integrated thermal and imaging box. Talanta 208, 120407 (2020)

    Article  CAS  PubMed  Google Scholar 

  116. Aydindogan, E., Ceylan, A.E., Timur, S.: Paper-based colorimetric spot test utilizing smartphone sensing for detection of biomarkers. Talanta 208, 120446 (2020)

    Article  CAS  PubMed  Google Scholar 

  117. Bordbar, M.M., Samadinia, H., Sheini, A., Halabian, R., Parvin, S., Ghanei, M., Bagheri, H.: A colorimetric electronic tongue based on bi-functionalized AuNPs for fingerprint detection of cancer markers. Sens. Actuator B-Chem. 368, 132170 (2022)

    Article  CAS  Google Scholar 

  118. Chen, Y., Chu, W., Liu, W., Guo, X.: Distance-based carcinoembryonic antigen assay on microfluidic paper immunodevice. Sens. Actuator B-Chem. 260, 452–459 (2018)

    Article  CAS  Google Scholar 

  119. Abarghoei, S., Fakhri, N., Borghei, Y.S., Hosseini, M., Ganjali, M.R.: A colorimetric paper sensor for citrate as biomarker for early stage detection of prostate cancer based on peroxidase-like activity of cysteine-capped gold nanoclusters. Spectro. Acta Pt. A-Molec. Biomolec. Spectr. 210, 251–259 (2019)

    Article  CAS  Google Scholar 

  120. Lee, J., Na, H.K., Lee, S., Kim, W.K.: Advanced graphene oxide-based paper sensor for colorimetric detection of miRNA. Microchim. Acta 189, 1–8 (2022)

    Article  Google Scholar 

  121. Gao, X., Xu, H., Baloda, M., Gurung, A.S., Xu, L.P., Wang, T., Zhang, X., Liu, G.: Visual detection of microRNA with lateral flow nucleic acid biosensor. Biosens. Bioelectron. 54, 578–584 (2014)

    Article  CAS  PubMed  Google Scholar 

  122. Ranganathan, V., Srinivasan, S., Singh, A., DeRosa, M.C.: An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2). Anal. Biochem. 588, 113471 (2020)

    Article  CAS  PubMed  Google Scholar 

  123. Majdinasab, M., Badea, M., Marty, J.L.: Aptamer-Based lateral flow assays: current trends in clinical diagnostic rapid tests. Pharmaceuticals 15, 90 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Koczula, K.M., Gallotta, A.: Lateral flow assays. Essays Biochem. 60, 111–120 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  125. Huang, X., El-Sayed, M.A.: Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 1, 13–28 (2010)

    Article  Google Scholar 

  126. VS, A.P., Joseph, P., SCG, K.D., Lakshmanan, S., Kinoshita, T., Muthusamy, S.: Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C 78, 1231–1245 (2017)

    Article  Google Scholar 

  127. Abdolhosseini, M., Zandsalimi, F., Moghaddam, F.S., Tavoosidana, G.: A review on colorimetric assays for DNA virus detection. J. Virol. Methods 301, 114461 (2022)

    Article  CAS  PubMed  Google Scholar 

  128. Iarossi, M., Schiattarella, C., Rea, I., Stefano, L.D., Fittipaldi, R., Vecchione, A., Velotta, R., Ventura, B.D.: Colorimetric immunosensor by aggregation of photochemically functionalized gold nanoparticles. ACS Omega 3, 3805–3812 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Politi, J., Stefano, L.D., Rea, I., Gravagnuolo, A.M., Giardina, P., Methivier, C., Casale, S., Spadavecchia, J.: One-pot synthesis of a gold nanoparticle–Vmh2 hydrophobin nanobiocomplex for glucose monitoring. Nanotechnology 27, 195701 (2016)

    Article  PubMed  Google Scholar 

  130. Nilam, M., Hennig, A., Nau, W.M., Assaf, K.I.: Gold nanoparticle aggregation enables colorimetric sensing assays for enzymatic decarboxylation. Anal. Methods 9, 2784–2787 (2017)

    Article  CAS  Google Scholar 

  131. Thobakgale, L., Ombinda-Lemboumba, S., Mthunzi-Kufa, P.: Chemical sensor nanotechnology in pharmaceutical drug research. Nanomaterials 12, 2688 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mayer, K.M., Hafner, J.H.: Localized surface plasmon resonance sensors. Chem. Rev. 111, 3828–3857 (2011)

    Article  CAS  PubMed  Google Scholar 

  133. Heo, S.E., Ha, J.W.: Single-particle study: refractive index sensitivity of localized surface plasmon resonance inflection points in mesoporous silica-coated gold nanorods. BioChip J. 16, 183–190 (2022)

    Article  CAS  Google Scholar 

  134. Jazayeri, M.H., Aghaie, T., Nedaeinia, R., Manian, M., Nickho, H.: Rapid noninvasive detection of bladder cancer using survivin antibody-conjugated gold nanoparticles (GNPs) based on localized surface plasmon resonance (LSPR). Cancer Immunol. Immunother. 69, 1833–1840 (2020)

    Article  CAS  PubMed  Google Scholar 

  135. Jazayeri, M.H., Amani, H., Pourfatollah, A.A., Avan, A., Ferns, G.A., Pazoki-Toroudi, H.: Enhanced detection sensitivity of prostate-specific antigen via PSA-conjugated gold nanoparticles based on localized surface plasmon resonance: GNP-coated anti-PSA/LSPR as a novel approach for the identification of prostate anomalies. Cancer Gene Ther. 23, 365–369 (2016)

    Article  CAS  PubMed  Google Scholar 

  136. Xie, X., Xu, W., Liu, X.: Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Accounts Chem. Res. 45, 1511–1520 (2012)

    Article  CAS  Google Scholar 

  137. Gao, Z., Hou, L., Xu, M., Tang, D.: Enhanced colorimetric immunoassay accompanying with enzyme cascade amplification strategy for ultrasensitive detection of low-abundance protein. Sci. Rep. 4, 1–8 (2014)

    Google Scholar 

  138. Guo, J., Zhao, X., Hu, J., Lin, Y., Wang, Q.: Tobacco mosaic virus with peroxidase-like activity for cancer cell detection through colorimetric assay. Mol. Pharm. 15, 2946–2953 (2018)

    Article  CAS  PubMed  Google Scholar 

  139. Li, L., Xing, Z., Tang, Q., Yang, L., Dai, L., Wang, H., Yan, T., Xu, W., Ma, H., Wei, Q.: Enzyme-free colorimetric immunoassay for protein biomarker enabled by loading and disassembly behaviors of polydopamine nanoparticles. ACS Appl. Bio Mater. 3, 8841–8848 (2020)

    Article  CAS  PubMed  Google Scholar 

  140. dos Santos, G.P., Corrêa, C.C., Kubota, L.T.: A simple, sensitive and reduced cost paper-based device with low quantity of chemicals for the early diagnosis of Plasmodium falciparum malaria using an enzyme-based colorimetric assay. Sens. Actuators B-Chem. 255, 2113–2120 (2018)

    Article  Google Scholar 

  141. Mu, R., Wang, Z., Wamsley, M.C., Duke, C.N., Lii, P.H., Epley, S.E., Todd, L.C., Roberts, P.J.: Application of enzymes in regioselective and stereoselective organic reactions. Catalysts 10, 832 (2020)

    Article  CAS  Google Scholar 

  142. Singh, S.: Nanomaterials exhibiting enzyme-like properties (nanozymes): current advances and future perspectives. Front. Chem. 7, 46 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Qian, X., Städler, B.: Polydiacetylene-based biosensors for the detection of viruses and related biomolecules. Adv. Funct. Mater. 30, 2004605 (2020)

    Article  CAS  Google Scholar 

  144. Fang, F., Meng, F., Luo, L.: Recent advances on polydiacetylene-based smart materials for biomedical applications. Mat. Chem. Front. 4, 1089–1104 (2020)

    Article  CAS  Google Scholar 

  145. Israeli, R., Kolusheva, S., Mateos-Gil, P., Gizeli, E., Jelinek, R.: Chromatic dendrimer/polydiacetylene nanoparticles. ACS Appl. Polym. Mater. 3, 2931–2937 (2021)

    Article  CAS  Google Scholar 

  146. Sagong, H.Y., Son, M.H., Min, S.H., Jung, Y.K.: Controllable color change of polydiacetylene vesicles under thermal-photo stimuli. Polymer 233, 124211 (2021)

    Article  CAS  Google Scholar 

  147. Zhang, Z., Wang, F., Chen, X.: Recent advances in the development of polydiacetylene-based biosensors. Chin. Chem. Lett. 30, 1745–1757 (2019)

    Article  Google Scholar 

  148. Weston, M., Tjandra, A.D., Chandrawati, R.: Tuning chromatic response, sensitivity, and specificity of polydiacetylene-based sensors. Polym. Chem. 11, 166–183 (2020)

    Article  CAS  Google Scholar 

  149. Kim, C., Lee, K.: Polydiacetylene (PDA) liposome-based immunosensor for the detection of exosomes. Biomacromol 20, 3392–3398 (2019)

    Article  CAS  Google Scholar 

  150. Matteis, V.D., Cascione, M., Fella, G., Mazzotta, L., Rinaldi, R.: Colorimetric paper-based device for hazardous compounds detection in air and water: a proof of concept. Sensors 20, 5502 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chen, W., Fang, X., Li, H., Cao, H., Kong, J.: A simple paper-based colorimetric device for rapid mercury (II) assay. Sci. Rep. 6, 1–7 (2016)

    Google Scholar 

  152. Javani, A., Javadi-Zarnaghi, F., Rasaee, M.J.: Development of a colorimetric nucleic acid-based lateral flow assay with non-biotinylated capture DNA. Appl. Biol. Chem. 60, 637–645 (2017)

    Article  CAS  Google Scholar 

  153. Balbach, S., Jiang, N., Moreddu, R., Dong, X., Kurz, W., Wang, C., Dong, J., Yin, Y., Butt, H., Brischwein, M., Hayden, O., Jakobi, M., Tasoglu, S., Koch, A.W., Yetisen, A.K.: Smartphone-based colorimetric detection system for portable health tracking. Anal. Methods 13, 4361–4369 (2021)

    Article  CAS  PubMed  Google Scholar 

  154. Chu, H., Liu, C., Liu, J., Yang, J., Li, Y., Zhang, X.: Recent advances and challenges of biosensing in point-of-care molecular diagnosis. Sens. Actuator B-Chem. 348, 130708 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (20009356) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was partially supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT, and Future Planning (MSIT) (NRF-2021EG053010113 & 2022R1A2C1009383).

Funding

Ministry of Trade, Industry and Energy (Grant no. 20009356); Ministry of Science, ICT and Future Planning (Grant no. 2021EG053010113, 2022R1A2C1009383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Kyung Jung.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, M.H., Park, S.W., Sagong, H.Y. et al. Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BioChip J 17, 44–67 (2023). https://doi.org/10.1007/s13206-022-00089-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-022-00089-6

Keywords

Navigation