Skip to main content
Log in

Advances for the Development of In Vitro Immunosensors for Multiple Sclerosis Diagnosis

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

The diagnosis of diseases based on immunosensors have been objective of research in the last years, providing an improvement for a rapid detection, high sensitivity, precision, accuracy, specificity and resolution. Areas of progress such as analytical technologies, interpretation and standardization has been done for common biomarkers. However, years of research and development of a functional immunosensor with an unusual biomarker require further investigation to be optimized in any aspect. Recent development of biosensors to diagnose nervous system diseases, such as immunosensors for multiple sclerosis, has been the object of study in the past 10 years to improve common in vitro diagnostic methods such as enzyme-linked immunosorbent assays (ELISA) on cerebrospinal fluid (CSF), showing a big opportunity for further diagnostic optimization. The aim of this review is to show a report on the development of in vitro immunosensors for multiple sclerosis diagnosis until today, with the particular focus on monitoring analyte concentration levels on cerebrospinal fluid and serum as a contribution and improvement to current diagnostic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ottervald, J., Franzén, B., Nilsson, K., Andersson, L.I., Khademi, M., Eriksson, B., Kjellström, S., Marko-Varga, G., Végvári, Á., Harris, R., Laurell, T., Miliotis, T., Matusevicius, D., Saltere, H., Ferm, M., Olsson, T.: Multiple sclerosis: identification and clinical evaluation of novel CSF biomarkers. J. Prot. 73, 1117–1132 (2010)

    Article  CAS  Google Scholar 

  2. Taveggia, C., Feltri, M.L., Wrabetz, L.: Signals to promote myelin formation and repair. Nat. Rev. Neurol. 6, 276–287 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel, G.J., Albers, R.W.: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th edn. American Society for Neurochemistry, Philadelphia, PA (1999)

    Google Scholar 

  4. French-Constant, C., Colognato, H., Franklin, R.J.M.: The mysteries of myelin unwrapped. Science 304, 688–689 (2004)

    Article  Google Scholar 

  5. Morell, P.: Myelin, 1st edn. Springer, Boston, MA (1984)

    Book  Google Scholar 

  6. Schaeffer, J., Cossetti, C., Mallucci, G., Pluchino, S.: Multiple sclerosis. Neurobiol. Brain Disord. Biol. Basis Neurol. Psychiatr. Disord. 1, 497–520 (2015)

    Google Scholar 

  7. Ojha, S., Kumar, B.: A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. J. Cell. Immunother. 4, 56–64 (2018)

    Article  Google Scholar 

  8. Goldenberg, M.M.: Multiple sclerosis review. Pharm. Ther. 37, 175 (2012)

    Google Scholar 

  9. Correale, J., Gaitán, M.I., Ysrraelit, M.C., Fiol, M.P.: Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain 140, 527–546 (2017)

    PubMed  Google Scholar 

  10. Lassmann, H.: Pathology and disease mechanisms in different stages of multiple sclerosis. J. Neurol. Sci. 333, 1–4 (2013)

    Article  CAS  PubMed  Google Scholar 

  11. Saccà, V., Sarica, A., Novellino, F., Barone, S., Tallarico, T., Filippelli, E., Granata, A., Chiriaco, C., Bruno, R., Valentino, P., Quattrone, A.: Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis form resting-state FMRI connectivity data. Brain Imaging Behav. 13, 1103–1114 (2019)

    Article  PubMed  Google Scholar 

  12. Zhang, H., Alberts, E., Pongratz, V., Mühlau, M., Zimmer, C., Wiestler, B., Eichinger, P.: Predicting conversion from clinically isolated syndrome to multiple sclerosis—an imaging-based machine learning approach. Neuroimage Clin. 21, 101593 (2019)

    Article  PubMed  Google Scholar 

  13. Zhao, Y., Healy, B.C., Rotstein, D., Guttmann, C.R., Bakshi, R., Weiner, H.L., Brodley, C., Chitnis, T.: Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLoS ONE 12, 0174866 (2017)

    Google Scholar 

  14. Ulrich, R., Kalkuhl, A., Deschl, U., Baumgärtner, W.: Machine learning approach identifies new pathways associated with demyelination in viral model of multiple sclerosis. J. Cell. Mol. Med. 14, 434–448 (2010)

    Article  CAS  PubMed  Google Scholar 

  15. Lötsch, J., Schiffmann, S., Schmitz, K., Brunkhorst, R., Lerch, F., Ferreiros, N., Wicker, S., Tegeder, I., Geisslinger, G., Ultsch, A.: Machine learning based lipid mediator serum concentration patterns allow identification of multiple sclerosis patients with high accuracy. Sci. Rep. 8, 1–16 (2018)

    Article  CAS  Google Scholar 

  16. Franklin, R.J.M., French-Constant, C.: Regenerating CNS myelin—from mechanisms to experimental medicines. Nat. Rev. Neurosci. 18, 753–769 (2017)

    Article  CAS  PubMed  Google Scholar 

  17. Etemadifar, M., Roomizadeh, P., Abtahi, S.H., Sajjadi, S., Abedini, A., Golabbakhsh, A., Fereidan-Esfahani, M., Akbari, M.: Linkage of multiple sclerosis and Guillain-Barre Syndrome: a population-based survey in Isfahan, Iran. Autoimmune Dis. 2012, 6 (2012)

    Google Scholar 

  18. Love, S.: Demyelinating diseases. J. Clin. Pathol. 59, 1151–1159 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thompson, A.J., Uitdehaag, B., Taylor, B., Holloway, E., Tremlett, H., Pandit, L., Battaglia, M.: ATLAS of MS 2013, 1st edn. Summer Editorial & Design, London (2013)

    Google Scholar 

  20. Wallin, M., Culpepper, W., Nichols, E., Bhutta, Z., Gebrehiwot, T., Hay, S., Khalil, I., Krohn, K., Liang, X., Naghavi, M., Mokdad, A., Nixon, M., Reiner, R., Sartorius, B., Smith, M., Topot-Madry, R., Werdecker, A., Vos, T., Feigin, V., Murray, C.: Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 269–285 (2019)

    Article  Google Scholar 

  21. Filippi, M., Rocca, M.A., De Stefano, N., Enzinger, C., Fisher, E., Horsfield, M.A., Inglese, M., Pelletier, D., Comi, G.: Magnetic resonance techniques in multiple sclerosis. Arch. Neurol. 68, 1514–1520 (2011)

    Article  PubMed  Google Scholar 

  22. Luque, F.A., Jaffe, S.L.: Cerebrospinal fluid analysis in multiple sclerosis. Int. Rev. Neurobiol. 79, 341–356 (2007)

    Article  CAS  PubMed  Google Scholar 

  23. McDonald, W.I., Compston, A., Edan, G., Goodkin, D., Hartung, H.P., Lublin, F.D., MacFarland, H., Paty, D., Polman, C., Reingold, S., Sandbereg, M., Sibley, W., Thompson, A.J., Van Den Noort, S., Weinshenker, B., Wolinsky, J.S.: Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann. Neurol. 50, 121–127 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Polman, C.H., Reingold, S., Edan, G., Filippi, M., Hartung, H.P., Kappos, L., Lublin, F., Metz, L., McFarland, H., O’Connor, P., Sandberg, M., Thompson, A.J., Weinshenker, B., Wolinsky, J.S.: Diagnostic criteria for multiple sclerosis: 2005 Revisions to the McDonald criteria. Ann. Neurol. 58, 840–846 (2005)

    Article  PubMed  Google Scholar 

  25. Polman, C.H., Reingold, S., Banwell, B., Clanet, M., Cohen, J., Filippi, M., Fujihara, K., Havrdova, E., Hutchinson, M., Kappos, L., Lublin, F., Montalban, X., O’Connor, P., Sandberg, M., Thompson, A., Waubant, E., Weinshenker, B., Wolinsky, J.: Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Deber, C.M., Reynolds, S.J.: Central nervous system myelin: structure, function, and pathology. Clin. Biochem. 24, 113–134 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yousef, A., Jonzzon, S., Suleiman, L., Arjona, J., Graves, J.S.: Biosensing in multiple sclerosis. Expert Rev. Med. Devices. 14, 901–912 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. Charcot, J.M.: Lectures on the diseases of the nervous system. New Sydenham Soc. 3, 399 (1889)

    Google Scholar 

  29. Ebringer, A.: Multiple Sclerosis, Mad Cow Disease and Acinetobacter, 1st edn. Springer, London (2015)

    Book  Google Scholar 

  30. Rolak, L.A.: MS: the basic facts. J Clin. Med. Res. 1, 61–62 (2003)

    Google Scholar 

  31. Golgi, C.: The Neuron Doctrine—Theory And Facts, Nobel Lectures: Physiology or Medicine 1921, 1st edn. Elsevier Pub. Co., New York (1906)

    Google Scholar 

  32. Ramón y Cajal, S.: The Structure and Connexions of Neurons, Nobel Lectures: Physiology or Medicine 1901–1921, 1st edn. Elsevier Pub. Co., New York, NY (1906)

    Google Scholar 

  33. Dawson, J.W.: The histology of disseminated sclerosis. Edinb. Med. J. 17, 311 (1916)

    PubMed Central  Google Scholar 

  34. Schwentker, F.F., Rivers, T.M.: The antibody response of rabbits to injections of emulsions and extracts of homologous brain. J. Exp. Med. 60, 559–574 (1934)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lane, B., Carroll, B.A., Pedley, T.A.: Computerized cranial tomography in cerebral diseases of white matter. Neurology. 28, 534–534 (1978)

    Article  CAS  PubMed  Google Scholar 

  36. Young, I.R., Hall, A.S., Pallis, C.A., Bydder, G.M., Legg, N.J., Steiner, R.E.: Nuclear magnetic resonance imaging of the brain in multiple sclerosis. Lancet 318, 1063–1066 (1981)

    Article  Google Scholar 

  37. Strimbu, K., Tavel, J.A.: What are biomarkers? Curr. Opin. HIV AIDS. 5, 463–466 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bielekova, B., Martin, R.: Development of biomarkers in multiple sclerosis. Brain 127, 1463–1478 (2004)

    Article  PubMed  Google Scholar 

  39. Teunissen, C.E., Malekzadeh, A., Leurs, C., Bridel, C., Killestein, J.: Body fluid biomarkers for multiple sclerosis—the long road to clinical application. Nat. Rev. Neurol. 11, 585–596 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. Comabella, M., Montalban, X.: Body fluid biomarkers in multiple sclerosis. Lancet Neurol. 13, 113–126 (2014)

    Article  PubMed  Google Scholar 

  41. Harris, V.K., Sadiq, S.A.: Disease biomarkers in multiple sclerosis. Mol. Diagn. Ther. 13, 225–244 (2009)

    Article  CAS  PubMed  Google Scholar 

  42. Wei, Y., Chang, H., Li, X., Wang, H., Du, L., Zhou, H., Xu, W., Ma, Y., Yin, L., Zhang, X.: Cytokines and tissue damage biomarkers in first onset neuromyelitis optica spectrum disorders: significance of interleukin-6. NeuroImmunoModulation 25, 215–224 (2018)

    Article  CAS  PubMed  Google Scholar 

  43. Sasayama, T., Nakamizo, S., Nishihara, M., Kawamura, A., Tanaka, H., Mizukawa, K., Miyake, S., Taniguchi, M., Hosoda, K., Kohmura, E.: Cerebrospinal fluid interleukin-10 is a potentially useful biomarker in immunocompetent primary central nervous System lymphoma (PCNSL). Nuero-oncology. 14, 368–380 (2012)

    Article  CAS  Google Scholar 

  44. Balashov, K.E., Smith, D.R., Khoury, S.J., Hafler, D.A., Weiner, H.L.: Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc. Natl. Acad. Sci. 94, 599–603 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jha, S., Srivastava, S.Y., Brickey, W.J., Iocca, H., Toews, A., Morrison, J.P., Chen, V., Gris, D., Matsushima, G., Ting, J.P.Y.: The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J. Neurosci. 30, 15811–15820 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Selmaj, K., Raine, C.S., Cannella, B., Brosnan, C.F.: Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J. Clin. Invest. 87, 949–954 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee, P., Severin, M., Lovett-Racke, A.: TGF-β regulation of T cells in multiple sclerosis. Eur. J. Immunol. 47, 446–453 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fainardi, E., Castellazi, M., Bellini, T., Manfrinato, M.C., Baldi, E., Casetta, I., Paolino, E., Granieri, E., Dallocchio, F.: Cerebrospinal fluid and serum levels and intrathecal production of active matrix metalloproteinase-9 (MMP-9) as markers of disease activity in patients with multiple sclerosis. Mult. Scler. J. 12, 294–301 (2006)

    Article  CAS  Google Scholar 

  49. Gandhi, R., Healy, B., Gholipour, T., Egorova, S., Musallam, A., Shuja, M., Nejad, P., Patel, B., Hei, H., Khoury, S., Quintana, F., Kivisakk, P., Chitnis, T., Weiner, H.: Circulating MicroRNAs as biomarkers for disease staging in multiple sclerosis. Ann. Neurol. 73, 729–740 (2013)

    Article  CAS  PubMed  Google Scholar 

  50. Tumani, H., Hartung, H., Hemmer, B., Teunissen, C., Deisenhammer, F., Giovannoni, G., Zettl, U., BioMS Study Group. The BioMS Study Group: Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol. Dis. 35, 117–127 (2009)

    Article  CAS  PubMed  Google Scholar 

  51. Bhalla, N., Jolly, P., Formisano, N., Estrela, P.: Introduction to biosensors. Essays Biochem. 60, 1–8 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mollarasouli, F., Kurbanoglu, S., Ozkan, S.: The role of electrochemical immunosensors in clinical analysis. Biosensors. 9, 86 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  53. La Belle, J.T., Bhavsar, K., Fairchild, A., Das, A., Sweeney, J., Alford, T.L., Wang, J., Bhavanandan, V., Joshi, L.: A cytokine immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens. Bioelectron. 23, 428–431 (2007)

    Article  PubMed  CAS  Google Scholar 

  54. Kang, X., Wang, J., Wu, H., Aksay, I.A., Liu, J., Lin, Y.: Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25, 901–905 (2009)

    Article  CAS  PubMed  Google Scholar 

  55. Asif, M.H., Ali, S.M.U., Nur, O., Willander, M., Brännmark, C., Stralfors, P., Englund, U., Elinder, F., Danielsson, B.: Functionalised ZnO-nanorod-based selective electrochemical sensor for intracellular glucose. Biosens. Bioelectron. 25, 2205–2211 (2010)

    Article  CAS  PubMed  Google Scholar 

  56. Heller, A., Feldman, B.: Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482–2505 (2008)

    Article  CAS  PubMed  Google Scholar 

  57. Ricci, F., Adornetto, G., Palleschi, G.: A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta. 84, 74–83 (2012)

    Article  CAS  Google Scholar 

  58. Leonard, J.P., Waldburger, K.E., Goldman, S.J.: Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J. Exp. Med. 181, 381–386 (1995)

    Article  CAS  PubMed  Google Scholar 

  59. Tsekenis, G., Garifallou, G.Z., Davis, F., Millner, P.A., Gibson, T.D., Higson, S.P.: Label-less immunosensor assay for myelin basic protein based upon an ac impedance protocol. Anal. Chem. 80, 2058–2062 (2008)

    Article  CAS  PubMed  Google Scholar 

  60. Orth, R.N., Clark, T.G., Craighead, H.G.: Avidin-biotin micropatterning methods for biosensor applications. Biomed. Microdevices. 5, 29–34 (2003)

    Article  CAS  Google Scholar 

  61. Hsu, S.M., Raine, L., Fanger, H.: The use of avidin-biotin-peroxidase (ABC) complex in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures. J. Histochem. Cytochem. 29, 577–580 (1981)

    Article  CAS  PubMed  Google Scholar 

  62. Real-Fernández, F., Colson, A., Bayardon, J., Nuti, F., Peroni, E., Meunier-Prest, R., Lolli, F., Chelli, M., Darcel, C., Jugé, S., Papini, A.M.: Ferrocenyl glycopeptides as electrochemical probes to detect autoantibodies in multiple sclerosis patients’ Sera. J. Pept. Sci. 90, 488–495 (2008)

    Article  CAS  Google Scholar 

  63. Bhavsar, K., Fairchild, A., Alonas, E., Bishop, D., La Belle, J.T., Sweeney, J., Alford, T.L., Joshi, L.: A cytokine immunosensor for Multiple Sclerosis detection based upon label-free electrochemical impedance spectroscopy using electroplated printed circuit board electrodes. Biosens. Bioelectron. 25, 506–509 (2009)

    Article  CAS  PubMed  Google Scholar 

  64. Nguyen, H.H., Park, J., Kang, S., Kim, M.: Surface plasmon resonance: a versatile technique for biosensor applications. Sensors. 15, 10481–10510 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Real-Fernández, F., Passalacqua, I., Peroni, E., Chelli, M., Lolli, F., Papini, A.M., Rovero, P.: Glycopeptide-based antibody detection in multiple sclerosis by surface plasmon resonance. Sensors. 12, 5596–5607 (2012)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Derkus, B., Emregul, E., Yucesan, C., Emregul, K.C.: Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens. Bioelectron. 46, 53–60 (2013)

    Article  CAS  PubMed  Google Scholar 

  67. Sungur, S.U.B., Emregul, E., Günendi, G., Numanoglu, Y.U.N.: New glucose biosensor based on glucose oxidase-immobilized gelatin film coated electrodes. J. Biomater. Appl. 18, 265–277 (2004)

    Article  CAS  PubMed  Google Scholar 

  68. Periasamy, A.P., Chang, Y.J., Chen, S.M.: Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode. Bioelectrochemistry 80, 114–120 (2011)

    Article  CAS  PubMed  Google Scholar 

  69. Mohamed, H.H., Dillert, R., Bahnemann, D.W.: TiO2 nanoparticles as electron pools: Single- and multi-step electron transfer processes. J. Photochem. Photobiol. A. 245, 9–17 (2012)

    Article  CAS  Google Scholar 

  70. Derkus, B., Emregul, E., Emregul, K.C., Yucesan, C.: Alginate and alginate-titanium dioxide nanocomposite as electrode materials for anti-myelin basic protein immunosensing. Sens. Actuators B-Chem. 192, 294–302 (2014)

    Article  CAS  Google Scholar 

  71. Lee, K.Y., Mooney, D.J.: Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao, H.Y., Zheng, W., Meng, Z.X., Zhou, H.M., Xu, X.X., Li, Z., Zheng, Y.F.: Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosens. Bioelectron. 24, 2352–2357 (2009)

    Article  CAS  PubMed  Google Scholar 

  73. Ionescu, R.E., Abu-Rabeah, K., Cosnier, S., Marks, R.S.: Improved enzyme retention from an electropolymerized polypyrrole-alginate matrix in the development of biosensors. Electrochem. Commun. 7, 1277–1282 (2005)

    Article  CAS  Google Scholar 

  74. Pan, B., Fromholt, S.E., Hess, E.J., Crawford, T.O., Griffin, J.W., Sheikh, K.A., Schnaar, R.L.: Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single-and double-null mice. Exp. Neurol. 195, 208–217 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Biela, A., Watkinson, M., Meier, U.C., Baker, D., Giovannoni, G., Becer, C.R., Krause, S.: Disposable MMP-9 sensor based on the degradation of peptide cross-linked hydrogel films using electrochemical impedance spectroscopy. Biosens. Bioelectron. 68, 660–667 (2015)

    Article  CAS  PubMed  Google Scholar 

  76. Venugopal, I., Sirhan, R., Basati, S., Linninger, A.A.: Prototype biosensor for detection of myelin basic protein biomarker in hydrocephalus diagnosis. Sens. Lett. 14, 84–92 (2016)

    Article  Google Scholar 

  77. Derkus, B., Bozkurt, P.A., Tulu, M., Emregul, K.C., Yucesan, C., Emregul, E.: Simultaneous quantification of Myelin Basic Protein and Tau proteins in cerebrospinal fluid and serum of multiple sclerosis patients using nanoimmunosensor. Biosens. Bioelectron. 89, 781–788 (2017)

    Article  CAS  PubMed  Google Scholar 

  78. Mansourian, N., Rahaie, M., Hosseini, M.: A Nanobiosensor based on fluorerescent DNA-hosted silver nanocluster and HCR amplification for detection of microRNA involved in progression of multiple sclerosis. J. Fluoresc. 27, 1679–1685 (2017)

    Article  CAS  PubMed  Google Scholar 

  79. Song, J., Dailey, D., Li, H., Jang, H., Russell, L., Zhang, P., Searson, P., Wang, J., Everett, A., Katz, H.: Influence of bioreceptor layer structure on myelin basic protein detection using organic field effect transistor-based biosensors. Adv. Funct. Mater. 28, 1802605 (2018)

    Article  CAS  Google Scholar 

  80. Soto, P., Guimaraes, D., Oliveira, O., Martins, A., Magalhaes, J., De Souza, A., Makoto, F., Okuda, N., Pereoni, L., Diniz, P., Machini, M., Lima, F.: Nanoimmunosensor based on atomic force spectroscopy to detect anti-myelin basic protein related to early-stage multiple sclerosis. Ultramicroscopy 211, 112946 (2020)

    Article  CAS  Google Scholar 

  81. Wang, Y.W., Chen, T.Y., Yang, T.H., Chang, C.C., Yang, T.L., Lo, Y.H., Huang, J.J.: Thin-film transistor-based biosensors for determining stoichiometry of biochemical reactions. PLoS ONE 11, 2–9 (2016)

    Article  Google Scholar 

  82. Shen, Y.C., Yang, C.H., Chen, S.W., Wu, S.H., Yang, T.L., Huang, J.J.: IGZO thin film transistor biosensors functionalized with ZnO nanorods and antibodies. Biosens. Bioelectron. 54, 306–310 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CONACYT, México (Grant number 294690)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jorge M. Guerrero or Amanda Carrillo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero, J.M., Aguirre, F.S., Mota, M.L. et al. Advances for the Development of In Vitro Immunosensors for Multiple Sclerosis Diagnosis. BioChip J 15, 205–215 (2021). https://doi.org/10.1007/s13206-021-00018-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-021-00018-z

Keywords

Navigation