Skip to main content
Log in

Development of the Microfluidic Device to Regulate Shear Stress Gradients

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Shear stress occurs in flowing liquids, especially at the interface of a flowing liquid and a stationary solid phase. Thus, it occurs inside the artery system of the human body, where it is responsible for a number of biological functions. The shear stress level generally remains less than 70 dyne/cm2 in the whole circulatory system, but in the stenotic arteries, which are constricted by 95%, a shear stress greater than 1,000 dyne/cm2 can be reached. Methods of researching the effects of shear stress on cells are of large interest to understand these processes. Here, we show the development of a microfluidic device for generating shear stress gradients. The performance of the shear stress gradient generator was theoretically simulated prior to experiments. Through simple manipulations of the liquid flow, the shape and magnitude of the shear stress gradients can be manipulated. Our microfluidic device consisted of five portions divided by arrays of micropillars. The generated shear stress gradient has five distinct levels at 8.38, 6.55, 4.42, 2.97, and 2.24 dyne/cm2. Thereafter, an application of the microfluidic device was demonstrated testing the effect of shear stress on human umbilical vein endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Korin, N., Gounis, M.J., Wakhloo, A.K. & Ingber, D.E. Targeted Drug Delivery to Flow–Obstructed Blood Vessels Using Mechanically Activated Nanotherapeutics. JAMA Neurol. 72, 119–122 (2015).

    Article  PubMed  Google Scholar 

  2. Chistiakov, D.A., Orekhov, A.N. & Bobryshev, Y.V. Effects of shear stress on endothelial cells: go with the flow. Acta Physiol. 219, 382–408 (2017).

    Article  CAS  Google Scholar 

  3. Zhang, X., Jones, P. & Haswell, S.J. Attachment and detachment of living cells on modified microchannel surfaces in a microfluidic–based lab–on–a–chip system. Chem. Eng. J. 135, S82–88 (2008).

    Article  CAS  Google Scholar 

  4. Plouffe, B.D. et al. Peptide–mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow. Langmuir 23, 5050–5055 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Plouffe, B.D., Kniazeva, T., Mayer, J.E., Murthy, S.K. & Sales, V.L. Development of microfluidics as endothelial progenitor cell capture technology for cardiovascular tissue engineering and diagnostic medicine. FASEB J. 23, 3309–3314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sin, A., Murthy, S.K., Revzin, A., Tompkins, R.G. & Toner, M. Enrichment using antibody–coated microfluidic chambers in shear flow: model mixtures of human lymphocytes. Biotechnol. Bioeng. 91, 816–826 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Sorescu, G.P. et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response. J. Biol. Chem. 278, 31128–31135 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Glen, K. et al. Modulation of functional responses of endothelial cells linked to angiogenesis and inflammation by shear stress: differential effects of the mecha notransducer CD31. J. Cell Physiol. 227, 2710–2721 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Stolberg, S. & McCloskey, K.E. Can shear stress direct stem cell fate? Biotechnol. Progr. 25, 10–19 (2009).

    CAS  Google Scholar 

  10. Park, J. et al. Control of stem cell fate and function by engineering physical microenvironments. Intrgr. Biol. 4, 1008–1018 (2012).

    Article  CAS  Google Scholar 

  11. Bowden, N. et al. Experimental Approaches to Study Endothelial Responses to Shear Stress. Antioxid. Redox Signal. 25, 389–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Chiu, D.T. et al. Small but Perfectly Formed? Successes, Challenges, and Opportunities for Microfluidics in the Chemical and Biological Sciences. Chem. 2, 201–223 (2017).

    Article  CAS  Google Scholar 

  13. Kim, T.H., Lee, J.M., Chung, B.H. & Chung B.G. Development of microfluidic LED sensor platform. Nano Converg. 2, 12 (2015).

    Google Scholar 

  14. Kim, J.–y., Chang, S.–I. & O’Hare, D. Integration of monolithic porous polymer with droplet–based microfluidics on a chip for nano/picoliter volume sample analysis. Nano Converg. 1, 3 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Panigrahi, P.K. Transport Phenomena in Microfluidic Systems: John Wiley & Sons, pp. 13–19 (2016).

    Book  Google Scholar 

  16. Yuki, T., Masayuki, Y., Teruo, O., Takehiko, K. & Kiichi, S. Evaluation of effects of shear stress on hepatocytes by a microchip–based system. Meas. Sci. Technol. 17, 3167 (2006).

    Article  CAS  Google Scholar 

  17. Gutierrez, E. & Groisman, A. Quantitative Measurements of the Strength of Adhesion of Human Neutrophils to a Substratum in a Microfluidic Device. Anal. Chem. 79, 2249–2258 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Rupprecht, P. et al. A tapered channel microfluidic device for comprehensive cell adhesion analysis, using measurements of detachment kinetics and shear stressdependent motion. Biomicrofluidics 6, 014107 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  19. Kim, H.W., Han, S., Kim, W., Lim, J. & Kim, D.S. Modulating wall shear stress gradient via equilateral triangular channel for in situ cellular adhesion assay. Biomicrofluidics 10, 054119 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, W.–M. et al. A novel gait platform to measure isolated plantar metatarsal forces during walking. J. Biomech. 43, 2017–2021 (2010).

    Article  PubMed  Google Scholar 

  21. Kärki, S., Lekkala, J., Kuokkanen, H. & Halttunen, J. Development of a piezoelectric polymer film sensor for plantar normal and shear stress measurements. Sens. Actuators A Phys. 154, 57–64 (2009).

    Article  CAS  Google Scholar 

  22. Heywood, E.J., Jeutter, D.C. & Harris, G.F. Tri–axial plantar pressure sensor: design, calibration and characterization. The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2010–2013 (2004).

    Google Scholar 

  23. Rajala, S. & Lekkala, J. Plantar shear stress measurements — A review. Clin. Biomech. 29, 475–483 (2014).

    Article  Google Scholar 

  24. Gnanamanickam, E.P., Nottebrock, B., Groβe, S., Sullivan, J.P. & Schröder, W. Measurement of turbulent wall shear–stress using micro–pillars. Meas. Sci. Technol. 24, 124002 (2013).

    Article  CAS  Google Scholar 

  25. Green, J.V. et al. Effect of channel geometry on cell adhesion in microfluidic devices. Lab Chip 9, 677–685 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, J.M., Kim, J.–e., Kang, E., Lee, S.–H. & Chung, B.G. An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells. Electrophoresis 32, 3133–3137 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Galie, P., Van Oosten, A., Chen, C. & Janmey, P. Application of multiple levels of fluid shear stress to endothelial cells plated on polyacrylamide gels. Lab Chip 15, 1205–1212 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Back, L.H., Radbill, J.R., Cho, Y.I. & Crawford, D.W. Measurement and prediction of flow through a replica segment of a mildly atherosclerotic coronary artery of man. J. Biomech. 19, 1–17 (1986).

    Article  CAS  PubMed  Google Scholar 

  29. Saxena, A., Ng, E. & Raman, V. Thermographic venous blood flow characterization with external cooling stimulation. Infrared Phys. Technol. 90, 8–19 (2018).

    Article  Google Scholar 

  30. Inoguchi, H., Tanaka, T., Maehara, Y. & Matsuda, T. The effect of gradually graded shear stress on the morphological integrity of a huvec–seeded compliant small–diameter vascular graft. Biomaterials 28, 486–495 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Abu–Reesh, I. & Kargi, F. Biological responses of hybridoma cells to defined hydrodynamic shear stress. J. Biotechnol. 9, 167–178 (1989).

    Article  Google Scholar 

  32. Bruus, H. Acoustofluidics 1: Governing equations in microfluidics. Lab Chip 11, 3742–3751 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Duffy, D.C., McDonald, J.C., Schueller, O.J.A. & Whitesides, G.M. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal. Chem. 70, 4974–4984 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Choi, J.W. et al. Dual–nozzle microfluidic droplet generator. Nano Converg. 5, 12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Choi, J.–H. et al. Priming nanoparticle–guided diagnostics and therapeutics towards human organs–on–a–chips microphyiological system. Nano Converg. 6, 24 (2016).

    Article  CAS  Google Scholar 

  36. Kim, J.–Y., Chang, S.–I., de Mello, A.J. & O’Hare, D. Integration of monolithic porous polymer with droplet–based microfluidics on a chip for nano/picoliter volume sample analysis. Nano Converg. 1, 3 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bong Geun Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.H., Lee, J.M., Ahrberg, C.D. et al. Development of the Microfluidic Device to Regulate Shear Stress Gradients. BioChip J 12, 294–303 (2018). https://doi.org/10.1007/s13206-018-2407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-018-2407-9

Keywords

Navigation