Skip to main content

Advertisement

Log in

Nanotechnology: current uses and future applications in the food industry

  • Review article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfadul SM, Elneshwy AA (2010) Use of nanotechnology in food processing, packaging and safety review. Afr J Food Agric Nutr Dev 10(6):2719–2739

    CAS  Google Scholar 

  • Amaral DMF, Bhargava K (2015) Essential oil nanoemulsions and food applications. Adv Food Technol Nutr Sci Open J 1:84–87

    Article  Google Scholar 

  • Arévalo FJ, Granero AM, Fernández H, Raba J, Zón MA (2011) Citrinin (CIT) determination in rice samples using a micro fluidic electrochemical immunosensor. Talanta 83:966–973

    Article  Google Scholar 

  • Arshak K, Adley C, Moore E et al (2007) Characterization of polymer nanocomposite sensors for quantification of bacterial cultures. Sens Actuators B Chem 126:226–231

    Article  CAS  Google Scholar 

  • Ashwood P, Thompson R, Powell J (2007) Fine particles that adsorb lipopolysaccharide via bridging calcium cations may mimic bacterial pathogenicity towards cells. Exp Biol Med 232:107–117

    CAS  Google Scholar 

  • Badgley C, Perfecto I (2007) Can organic agriculture feed the world. Renew Agric Food Syst 22:80–85

    Article  Google Scholar 

  • Bhattacharya S, Jang J, Yang L, Akin D, Bashir R (2007) Biomems and nanotechnology-based approaches for rapid detection of biological entities. J Rapid Methods Autom Microbiol 15:1–32

    Article  CAS  Google Scholar 

  • Biswal SK, Nayak AK, Parida UK, Nayak PL (2012) Applications of nanotechnology in agriculture and food sciences. Int J Inno Sci 2:21–36

    Google Scholar 

  • Bratovčić A, Odobašić A, Ćatić S, Šestan I (2015) Application of polymer nanocomposite materials in food packaging. Croatian J Food Sci Technol 7:86–94

    Article  Google Scholar 

  • Canham LT (2007) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18:185704

    Article  Google Scholar 

  • Cha D, Chinnan M (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237

    Article  CAS  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594

    Article  CAS  Google Scholar 

  • Choi AJ, Kim CJ, Cho YJ, Hwang JK, Kim CT (2011) Characterization of capsaicin-loaded nano-emulsions stabilized with alginate and chitosan by self-assembly. Food Bioprocess Tech 4:1119–1126

    Article  CAS  Google Scholar 

  • Chung IM, Rajakumar G, Gomathi T et al (2017) Nanotechnology for human food: advances and perspective. Front Life Sci 10(1):63–72

    Article  CAS  Google Scholar 

  • Cushen M, Kerry J, Morris M et al (2012) Nanotechnologies in the food industry—recent developments, risks, and regulation. Trends Food Sci Technol 24:30–46

    Article  CAS  Google Scholar 

  • Davis D, Guo X, Musavi L et al (2013) Gold nanoparticle-modified carbon electrode biosensor for the detection of listeria monocytogenes. Ind Biotechnol 9:31–36

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Tech 6:628–647

    Article  CAS  Google Scholar 

  • Galarreta BC, Tabatabaei M, Guieu V, Peyrin E, Lagugne-Labarthet F (2013) Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A. Anal Bioanaltical Chem 405:1613–1621

    Article  CAS  Google Scholar 

  • Giannakas A, Vlacha M, Salmas C et al (2016) Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr Polym 140:408–415

    Article  CAS  Google Scholar 

  • Guan D, Hubacek K (2010) China can offer domestic emission cap-and-trade in post 2012. Environ Sci Technol 44:5327

    Article  CAS  Google Scholar 

  • Guo L, Feng J, Fang Z, Xu J, Lu X (2015) Application of microfluidic “lab-on-a-chip” for the detection of mycotoxins in foods. Trends Food Sci Technol 46:252–263

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  • Gupta S, Moulik SP (2008) Biocompatible microemulsions and their prospective uses in drug delivery. ‎J Pharm Sci 97:22–45

    Article  CAS  Google Scholar 

  • Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties, and applications. Soft Matter 12:2826–2841

    Article  CAS  Google Scholar 

  • Hervas M, Lopez MA, Escarpa A (2011) Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst 136:2131–2138

    Article  CAS  Google Scholar 

  • Honarvar Z, Hadian Z, Mashayekh M (2016) Nanocomposites in food packaging applications and their risk assessment for health. Electron Physician 8(6):2531–2538

    Article  Google Scholar 

  • Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75:R50–R56

    Article  CAS  Google Scholar 

  • Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111

    Article  CAS  Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2016) Nanomaterials in food and agriculture: an overview of their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 6:1–21

    CAS  Google Scholar 

  • Jebel FS, Almasi H (2016) Morphological, physical, antimicrobial and release properties of ZnO nanoparticles-loaded bacterial cellulose films. Carbohydr Polym 149:8–19

    Article  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. www.nanoforum.org

  • Kim H, Lee J, Kim JE et al (2013) Plum coatings of lemongrass oil-incorporating carnauba wax-based nanoemulsion. J Food Sci 78(10):1551–1559

    Article  Google Scholar 

  • Komaiko JS, McClements DJ (2016) Formation of food-grade nanoemulsions using low-energy preparation methods: a review of available methods. Compr Rev Food Sci Food Saf 15:331

    Article  CAS  Google Scholar 

  • Kour H, Malik AA, Ahmad N et al (2015) Nanotechnology-new lifeline for the food industry. Crit Rev Food Sci Nutr 5:0. https://doi.org/10.1080/10408398.2013.802662

    Article  CAS  Google Scholar 

  • Kuang DM, Peng C, Zhao Q et al (2010) Tumor-activated monocytes promote the expansion of IL-17-producing CD8+ T cells in hepatocellular carcinoma patients. J Immunol 185:1544–1549

    Article  CAS  Google Scholar 

  • Kuswandi B (2017) Environmental friendly food nano-packaging. Environ Chem Lett 15(2):205–221

    Article  CAS  Google Scholar 

  • Lee JS, Hong DY, Kim ES, Lee HG (2017) Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation. Colloids Surf B Biointerfaces 154:171–177

    Article  CAS  Google Scholar 

  • Lemes AP, Marcato PD, Ferreira OP, Alves OL, Duran N (2008) Nanocomposites of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) reinforced with carbon nanotubes and oxidized carbon nanotubes. Proc Nanotechnol Appl 615–085:72–75

    Google Scholar 

  • Li Z, Sheng C (2014) Nanosensors for food safety. J Nanosci Nanotechnol 14(1):905–912

    Article  CAS  Google Scholar 

  • Liu HY, Lin SL, Chan SA, Lin TY, Fuh MR (2013) Microfluidic chip-based nano-liquid chromatography tandem mass spectrometry for quantification of aflatoxins in peanut products. Talanta 113:76

    Article  CAS  Google Scholar 

  • López-rubio A, Gavara R, Lagaron JM (2006) Bioactive packaging: turning foods into healthier foods through biomaterials. Trends Food Sci Technol 17:567–575

    Article  Google Scholar 

  • Martínez-Bueno MJ, Hernando MD, Uclés S et al (2017) Identification of non-intentionally added substances in food packaging nano films by gas and liquid chromatography coupled to orbitrap mass spectrometry. Talanta 172:68–77

    Article  Google Scholar 

  • McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330

    Article  CAS  Google Scholar 

  • Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40(2):149–167

    Article  CAS  Google Scholar 

  • Mills A, Hazafy D (2009) Nanocrystalline SnO2-based, UVB activated colorimetric oxygen indicator. Sens Actuators B Chem 136:344–349

    Article  CAS  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419

    Google Scholar 

  • Mozafari MR (2006) Bioactive entrapment and targeting using nanocarrier technologies: an introduction in nanocarrier technologies. In: Mozafari MR (ed) Frontiers of nanotherapy. Springer, The Netherlands, pp 1–16

    Google Scholar 

  • Nair R, Varghese SH, Nair BG et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Novo P, Moulasa G, Chua V, Condea JP (2012) Lab-on-chip prototype platform for ochratoxin a detection in wine and beer. Procedia Eng 47:550–553

    Article  CAS  Google Scholar 

  • Novo P, Moulas G, França Prazeres DM, Chu V, Conde JP (2013) Detection of ochratoxin A in wine and beer by chemiluminescence-based ELISA in microfluidics with integrated photodiodes. Sens Actuators B 176:232–240

    Article  CAS  Google Scholar 

  • Oca-Avalos JMM, Candal RJ, Herrera ML (2017) Nanoemulsions: stability and physical properties. Curr Opin Food Sci 16:1–6

    Article  Google Scholar 

  • Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303

    Article  Google Scholar 

  • Pandey S, Zaidib MGH, Gururani SK (2013) Recent developments in clay-polymer nanocomposites. Sci J Rev 2:296–328

    Google Scholar 

  • Parker CO, Lanyon YH, Manning M, Arrigan DWM, Tothill IE (2009) Electrochemical immunochip sensor for aflatoxin M1 detection. Anal Chem 81:5291

    Article  CAS  Google Scholar 

  • Pathakoti K, Manubolu M, Hwang H (2017) Nanostructures: current uses and future applications in food science. J Food Drug Anal 25(2):245–253

    Article  CAS  Google Scholar 

  • Pradhan N, Singh S, Ojha N et al (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int 365672:17

    Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01014

    Google Scholar 

  • Qian K, Shi T, Tang T et al (2011) Preparation and characterization of nano-sized calcium carbonate as controlled release pesticide carrier for validamycin against Rhizoctonia solani. Microchim Acta 173(1–2):51–57

    Article  CAS  Google Scholar 

  • Racuciu M, Creanga D, Olteanu Z (2009) Water based magnetic fluid impact on young plants is growing. Rom Rep Phys 61(2):259–268

    Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities, and uncertainties for the global market. Int J Green Nanotechnol 1(2):72–96

    Article  Google Scholar 

  • Reynolds G (2007) FDA recommends nanotechnology research, but not labeled. Food Production Daily.com News, July 26, 2007

  • Rhim JW, Park HM, Ha CS (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38:1629–1652

    Article  CAS  Google Scholar 

  • Rivas GA, Miscoria SA, Desbrieres J, Berrera GD (2006) New biosensing platforms based on the layer-by-layer self-assembling polyelectrolytes on Nafion/carbon nanotubes-coated glassy carbon electrodes. Talanta 71:270–275

    Article  Google Scholar 

  • Sauceda-Friebe JC, Karsunke XYZ, Vazac S, Biselli S, Niessner R, Knopp D (2011) Regenerable immuno-biochip for screening ochratoxin A in green coffee extract using an automated microarray chip reader with chemiluminescence detection. Anal Chim Acta 689:234–242

    Article  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agrifood production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  Google Scholar 

  • Shankar S, Rhim JW (2016) Polymer nanocomposites for food packaging applications. In: Dasari A, Njuguna J (eds) Functional and physical properties of polymer nanocomposites. Wiley, Chichester

    Google Scholar 

  • Shelke NB, Vijay Kumar S, Mahadevan KM, Sherigara BS, Aminabhavi TM (2008) Synthesis, characterization, and evaluation of copolymers based on N-isopropylacrylamide and 2-ethoxyethyl methacrylate for the controlled release of felodipine. J Appl Polymer Sci. 110:2211–2217

    Article  CAS  Google Scholar 

  • Shim WB, Dzantiev BB, Eremin SA, Chung DH (2009) One-step simultaneous immunochromatographic strip test for multianalysis of ochratoxin a and zearalenone. J Microbiol Biotechnol 19:83–92

    CAS  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV et al (2011) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 5:432–444

    Article  CAS  Google Scholar 

  • Silva HD, Cerqueira MA, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Tech 5:854–867

    Article  CAS  Google Scholar 

  • Singh N (2015) An overview of the prospective application of nanoemulsions in foodstuffs and food packaging. ASIO J Microbiol Food Sci Biotechnol Innova 1(1):20–25

    Google Scholar 

  • Singh T, Shukla S, Kumar P et al (2017) Application of nanotechnology in food science: perception and overview. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01501

    Google Scholar 

  • Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4:8–18

    Article  CAS  Google Scholar 

  • Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  CAS  Google Scholar 

  • Sugumar S, Singh S (2016) Nanoemulsion of orange oil with non-ionic surfactant produced emulsion using ultrasonication technique: evaluating against food spoilage yeast. Appl Nanosci 6(1):113–120

    Article  CAS  Google Scholar 

  • Sun Y, Xia Z, Zheng J et al (2015) Nanoemulsion-based delivery systems for nutraceuticals: influence of carrier oil type on the bioavailability of pterostilbene. J Funct Foods 13:61–70

    Article  CAS  Google Scholar 

  • Tang D, Sauceda JC, Lin Z et al (2009) Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens Bioelectron 25:514–518

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Gurunathan S, Chung IM (2015) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 252:1031–1046

    Article  CAS  Google Scholar 

  • Ursache-Oprisan M, Focanici E, Creanga D, Caltun O (2011) Sunflower chlorophyll levels after magnetic nanoparticle supply. Afr J Biotechnol 10(36):7092–7098

    CAS  Google Scholar 

  • Valdés MG, González ACV, Calzón JAG, Díaz-García ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19

    Article  Google Scholar 

  • Vidhyalakshmi R, Bhakyaraj R, Subhasree RS (2009) Encapsulation the future of probiotics—a review. Adv Biol Res 3:96–103

    CAS  Google Scholar 

  • Vidotti M, Carvalhal RF, Mendes RK et al (2011) Biosensors based on gold nanostructures. J Braz Chem Soc 22:3–20

    Article  CAS  Google Scholar 

  • Wang X, Jiang Y, Wang YW et al (2008) Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem 108:419–424

    Article  CAS  Google Scholar 

  • Youssef AM (2013) Polymer nanocomposites as a new trend for packaging applications. Polym Plast Technol Eng 52(7):635–660

    Article  CAS  Google Scholar 

  • Zhao W, Lu J, Ma W et al (2011) Rapid on-site detection of Acidovorax avenae subsp. Citrulli by gold-labeled DNA strip sensor. Biosens Bioelectron 26:4241–4244

    Article  CAS  Google Scholar 

  • Zhao X, Cui H, Wang Y et al (2017) Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.7b02004

    Google Scholar 

Download references

Acknowledgements

This paper was supported by the KU Research Professor Program of Konkuk University, Seoul, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Govindasamy Rajakumar or Ill-Min Chung.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiruvengadam, M., Rajakumar, G. & Chung, IM. Nanotechnology: current uses and future applications in the food industry. 3 Biotech 8, 74 (2018). https://doi.org/10.1007/s13205-018-1104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1104-7

Keywords

Navigation