Skip to main content
Log in

Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The present study focuses on the optimization of biosurfactant (BS) production using two potential biosurfactant producer Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3 and role of enzymes in the biodegradation of crude oil. The optimal conditions for P. stutzeri NA3 and A. baumannii MN3 for biodegradation were pH of 8 and 7; temperature of 30 and 40 °C, respectively. P. stutzeri NA3 and A. baumannii MN3 produced 3.81 and 4.68 g/L of BS, respectively. Gas chromatography mass spectrometry confirmed that BS was mainly composed of fatty acids. Furthermore, the role of the degradative enzymes, alkane hydroxylase, alcohol dehydrogenase and laccase on biodegradation of crude oil are explained. Maximum biodegradation efficiency (BE) was recorded for mixed consortia (86%) followed by strain P. stutzeri NA3 (84%). Both bacterial strains were found to be vigorous biodegraders of crude oil than other biosurfactant-producing bacteria due to their enzyme production capabilities and our results suggests that the bacterial isolates can be used for effective degradation of crude oil within short time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abalos A, Vinas M, Sabate J, Manresa MA, Solanas AM (2004) Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 15:249–260

    Article  CAS  Google Scholar 

  • Adebusoye SA, Ilori MO, Amund OO, Teniola OD, Olatope SO (2007) Microbial degradation of petroleum in a polluted tropical stream. World J Microbiol Biotechnol 23:1149–1159

    Article  CAS  Google Scholar 

  • Bao M, Pi Y, Wang L, Sun P, Li Y, Cao L (2014) Lipopeptide biosurfactant production bacteria Acinetobacter sp. D3-2 and its biodegradation of crude oil. Environ Sci Processes Impacts 16:897–903

    Article  CAS  Google Scholar 

  • Chandankere R, Yao J, Cai M, Masakorala K, Jain AK, Choig MMF (2014) properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122:140–148

    Article  CAS  Google Scholar 

  • Chen J, Huang PT, Zhang KY, Ding FR (2012) Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil. J Appl Microbiol 112:660–671

    Article  CAS  Google Scholar 

  • Chen C, Lin T, Shieh Y (2015) Emulsification and antioxidation of biosurfactant extracts from chinese medicinal herbs fermentation in vitro. J Biosci Bioeng 120:387–395

    Article  CAS  Google Scholar 

  • Chikere CB, Okpokwasili GC, Chikere BO (2011) Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech 1:117–138

    Article  Google Scholar 

  • Das K, Mukherjee AK (2007) Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from north-east India. Bioresour Technol 98:1339–1345

    Article  CAS  Google Scholar 

  • Davila AM, Marchal R, Vandecasteele JP (1992) Kinetics and balance of a fermentation free from product inhibition: sophorose lipid production by Candida bombicola. Appl Microbiol Biotechnol 38:6–11

    Article  CAS  Google Scholar 

  • Deepika KV, Kalam S, Sridhar PR, Podile AR, Bramhachari PV (2016) Optimization of rhamnolipid biosurfactant production by mangrove sediment bacterium Pseudomonas aeruginosa KVD-HR42 using response surface methodology. Biocatal Agric Biotechnol 5:38–47

    Google Scholar 

  • Desai J, Banat I (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • Dhasayan A, Selvin J, Kiran S (2015) Biosurfactant production from marine bacteria associated with sponge Callyspongia diffusa. 3 Biotech 5:443–454

    Article  Google Scholar 

  • Ekperusi OA, Aigbodion FI (2015) Bioremediation of petroleum hydrocarbons from crude oil contaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech 5:957–965

    Article  CAS  Google Scholar 

  • Elazzazy AM, Abdelmoneim TS, Almaghrabi OA (2015) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22:466–475

    Article  CAS  Google Scholar 

  • Ferradji FZ, Mnif S, Badis A, Rebbani S, Fodil D, Eddouaouda K, Sayadi S (2014) Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (North of Algeria). Int Biodeterior Biodegrad 86:300–308

    Article  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJ, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Tech 112:617–627

    Article  CAS  Google Scholar 

  • Freitas de Oliveira DW, Franc IWL, Felix AKN, Martins JJL, Giro MEA, Melob VMM, Goncalves LRB (2013) Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf B Biointerfaces 101:34–43

    Article  CAS  Google Scholar 

  • Gudina EJ, Teixeira JA, Rodrigues LR (2011) Biosurfactant-producing Lactobacilli: screening, production profiles, and effect of medium composition. Appl Environ Soil Sci 201254:9

    Google Scholar 

  • Hassanshahian M (2014) Isolation and characterization of biosurfactant producing bacteria from Persian Gulf (Bushehr Provenance). Mar Pollut Bull 86:361–366

    Article  CAS  Google Scholar 

  • Hassanshahian M, Giti E (2008) Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation biosurfactant production and crude oil biodegradation. Int Biodeterior Biodegrad 62:170–178

    Article  Google Scholar 

  • Hassanshahian M, Emtiazi G, Cappello S (2012) Isolation and characterization of crude-oil-degrading bacteria from the Persian Gulf and the Caspian Sea. Mar Pollut Bull 64:7–12

    Article  CAS  Google Scholar 

  • Hien LT, Yen NT, Nga WT (2013) Biosurfactant-producing Rhodococcus ruber TD2 isolated from oil polluted water in Vung Tau coastal zone. Tap Chi Sinh Hoc 35:454–460

    Google Scholar 

  • Ibrahim HMM (2016) Biodegradation of used engine oil by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 isolated from oil-contaminated soil. 3 Biotech 6:226

    Article  Google Scholar 

  • Ibrahim ML, Ijah UJJ, Manga SB, Bilbis LS, Umar S (2013) Production and partial characterization of biosurfactant produced by crude oil degrading bacteria. Int Biodeterior Biodegrad 81:28–34

    Article  CAS  Google Scholar 

  • Ismail W, Al-Rowaihi IS, Al-Humam AA, Hamza RY, El Nayal AM, Bououdina M (2013) Characterization of a lipopeptide biosurfactant produced by a crude-oil-emulsifying Bacillus sp. I-15. Int Biodeterior Biodegrad 84:168–178

    Article  CAS  Google Scholar 

  • Jain DK, Collins-Thompson DL, Lee H, Trevors JT (1991) A drop-collapsing test for screening surfactant producing microorganisms. J Microbiol Methods 13:271–279

    Article  Google Scholar 

  • Jauhari N, Mishra S, Kumari B, Singh SN (2014) Bacteria-mediated aerobic degradation of hexacosane in vitro conditions. Bioresour Technol 170:62–68

    Article  CAS  Google Scholar 

  • Jennema GE, McInerney MJ, Knapp RM, Clark JB, Feero JM, Revus DE, Menzie DE (1983) A halotolerant, biosurfactants producing Bacillus species potentially useful for enhanced oil recovery. Dev Ind Microbiol 24:485–492

    Google Scholar 

  • Ji Y, Mao G, Wang Y, Bartlam M (2013) Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Front Microbiol 4:1–13

    Article  Google Scholar 

  • Khopade A, Ren B, Liu XY, Mahadik K, Zhang L, Kokare C (2012) Production and characterization of biosurfactant from marine Streptomyces species B3. J Colloid Interface Sci 367:311–318

    Article  CAS  Google Scholar 

  • Kiran GS, Hema TA, Gandhimathi R, Selvin J, Anto Thomas T, Ravji TR, Natarajaseenivasan K (2009) Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf B 73:250–256

    Article  CAS  Google Scholar 

  • Kiran GS, Thomas TA, Selvin J, Sabarathnam B, Lipton AP (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 10:2389–2396

    Article  Google Scholar 

  • Korayem AS, Abdelhafez AA, Zaki MM, Saleh EA (2015) Optimization of biosurfactant production by Streptomyces isolated from Egyptian arid soil using plackett–burman design. Ann Agric Sci 60:209–217

    Google Scholar 

  • Kumar AP, Janardhan A, Radha S, Viswanath B, Narasimha G (2015) Statistical approach to optimize production of biosurfactant by Pseudomonas aeruginosa 2297. 3 Biotech 5:71–79

    Article  Google Scholar 

  • Kumar AP, Janardhan A, Viswanath B, Monika K, Jung JY, Narasimha G (2016) Evaluation of orange peel for biosurfactant production by Bacillus licheniformis and their ability to degrade naphthalene and crude oil. 3 Biotech 6:43

    Article  Google Scholar 

  • Kuppusamy S, Sethurajan M, Kadarkarai M, Aruliah R (2017) Biodecolourization of textile dyes by novel, indigenous Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. J Environ Chem Eng 5:716–724

    Article  CAS  Google Scholar 

  • Lotfabada TB, Shourianc M, Roostaazada R, Najafabadi AR, Adelzadeha MR, Noghabic KA (2009) An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B 69:183–193

    Article  Google Scholar 

  • Makkar RS, Cameotra SS (2002) An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl Microbiol Biotechnol 58:428–434

    Article  CAS  Google Scholar 

  • Mani P, Dineshkumar G, Jayaseelan T, Deepalakshmi K, Ganesh Kumar C, Senthil Balan S (2016) Antimicrobial activities of a promising glycolipid biosurfactant from a novel marine Staphylococcus saprophyticus SBPS 15. 3 Biotech 6:163

    Article  CAS  Google Scholar 

  • Meyer HP (2011) Sustainability and biotechnology. Org Process Res Dev 15:180–188

    Article  CAS  Google Scholar 

  • Michaud L, Lo Giudice A, Saitta M, De Domenico M, Vivia B (2004) The biodegradation efficiency on diesel oil by two psychrotrophic antarctic marine bacteria during a two-month-long experiment. Marine Res Bull 49:405–409

    Article  CAS  Google Scholar 

  • Mishra S, Singh SN (2012) Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes. Bioresour Technol 111:148–158

    Article  CAS  Google Scholar 

  • Mukherjee S, Das P, Sen R (2006) Towards commercial production of microbial surfactants. Trends Biotechnol 24:509–515

    Article  CAS  Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  Google Scholar 

  • Parthipan P, Elumalai P, Karthikeyan OP, Ting YP, Rajasekar A (2017a) A review on biodegradation of hydrocarbon and their influence on corrosion of carbon steel with special reference to petroleum industry. J Environ Biotechnol Res 6(1):12–33

    Google Scholar 

  • Parthipan P, Preetham E, Machuca LL, Rahman PKSM, Murugan K, Rajasekar A (2017b) Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol 8:193

    Article  Google Scholar 

  • Pathak KV, Keharia H (2014) Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR). 3 Biotech 4:41–48

    Article  Google Scholar 

  • Peele KA, Ravi Teja ChV, Kodali VP (2016) Emulsifying activity of a biosurfactant produced by a marine bacterium. 3 Biotech 6:177

    Article  Google Scholar 

  • Pirog TP, Shevchuk TA, Klimenko LA (2010) Intensification of surfactant synthesis in Rhodococcus erythropolis EK-1 cultivated on hexadecane. Appl Biochem Microbiol 46:599–606

    Article  CAS  Google Scholar 

  • Powalla M, Lang S, Wray V (1989) Penta- and disaccharide lipid formation by Nocardia corynebacteroides grown on n-alkanes. Appl Microbiol Biotechnol 31:473–479

    Article  CAS  Google Scholar 

  • Prieto LM, Michelon M, Burkert JFM, Kalil SJ, Burkert CAV (2008) The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil. Chemosphere 71:1781–1785

    Article  CAS  Google Scholar 

  • Rahman KSM, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002) Towards efficient crude oil degradation by a mixed bacterial consortia. Bioresour Technol 85:257–261

    Article  CAS  Google Scholar 

  • Rajasekar A (2017) Biodegradation of petroleum hydrocarbon and its influence on corrosion with special reference to petroleum industry. In: Heimann K et al (eds) Biodegradation and bioconversion of hydrocarbons. Springer, Heidelberg, pp 307–336

    Chapter  Google Scholar 

  • Rajasekar A, Ponmariappan S, Maruthamuthu S, Palaniswamy N (2007) Bacterial degradation and corrosion of naphtha in transporting pipeline. Curr Microbiol 55:374–381

    Article  CAS  Google Scholar 

  • Roy S, Chandni S, Das I, Karthik L, Kumar G, Bhaskara Rao KV (2015) Aquatic model for engine oil degradation by rhamnolipid producing Nocardiopsis VITSISB. 3 Biotech 5:153–164

    Article  Google Scholar 

  • Santos DKF, Brandao YB, Rufino RD, Luna JM, Salgueiro AA, Santos VA, Sarubbo LA (2014) Optimization of cultural conditions for biosurfactant production from Candida lipolytica. Biocatal Agric Biotechnol 3:48–57

    Google Scholar 

  • Sarafin Y, Donio MBS, Velmurugan S, Michaelbabu M, Citarasu T (2014) Kocuria marina BS-15 a biosurfactant producing halophilic bacteria isolated from solar salt works in India. Saudi J Biol Sci 21:511–519

    Article  CAS  Google Scholar 

  • Sathishkumar M, Binupriya AR, Baik SH, Yun SE (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean Soil Air Water 36:92–96

    Article  CAS  Google Scholar 

  • Sathishkumar K, Murugan K, Benelli G, Higuchi A, Rajasekar A (2016) Bioreduction of hexavalent chromium by Pseudomonas stutzeri L1 and Acinetobacter baumannii L2. Ann Microbiol. doi:10.1007/s13213-016-1240-4

    Google Scholar 

  • Sebatini AM, Jain M, Radha P, Kiruthika S, Tamilarasan K (2016) Immobilized lipase catalyzing glucose stearate synthesis and their surfactant properties analysis. 3 Biotech 6:184

    Article  Google Scholar 

  • Sifour M, Al-Jilawi MH, Aziz GM (2007) Emulsification properties of biosurfactant produced from Pseudomonas aeruginosa RB 28. Pak J Biol Sci 10:1331–1335

    Article  CAS  Google Scholar 

  • Van Beilen JB, Smits TH, Whyte LG, Schorcht S, Rothlisberger M, Plaggemeier T, Engesser KH, Witholt B (2002) Alkane hydroxylase homologues in gram-positive strains. Environ Microbiol 4:676–682

    Article  Google Scholar 

  • Van Dyke MI, Gulley SL, Lee H, Trevors JT (1991) Applications of microbial biosurfactants. Biotechnol Adv 9:241–252

    Article  Google Scholar 

  • Whang LM, Liu PWG, Ma CC, Cheng SS (2008) Application of biosurfactant, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151:155–163

    Article  CAS  Google Scholar 

  • Wu JY, Yeh KL, Lu WB, Lin CL, Chang JS (2008) Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour Technol 99:1157–1164

    Article  CAS  Google Scholar 

  • Xia WJ, Dong HP, Yu L, Yu DF (2011) Comparative study of biosurfactant produced by microorganisms isolated from formation water of petroleum reservoir. Colloids Surf A Physicochem Eng Asp 392:124–130

    Article  CAS  Google Scholar 

  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347

    Article  CAS  Google Scholar 

  • Zosim Z, Gutnick DL, Rosenberg E (1982) Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsan. Biotechnol Bioeng 24:281–292

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A. Rajasekar is thankful to the Department of Biotechnology ((DBT) Government of India) for the award of the Ramalingaswami re-entry Fellowship (BT/RLF/Re-entry/17/2012), Department of Science and Technology for the young scientist award (SB/YS/LS-40/2013), University Grants Commission (MRP-MAJOR-MICRO-2013-31825) and Science and Engineering Research Board, Department of Science and Technology, Government of India (EEQ/2016/000449). P. Parthipan acknowledge the DBT, Government of India for financial support through project scheme (DBT-RLF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruliah Rajasekar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthipan, P., Elumalai, P., Sathishkumar, K. et al. Biosurfactant and enzyme mediated crude oil degradation by Pseudomonas stutzeri NA3 and Acinetobacter baumannii MN3. 3 Biotech 7, 278 (2017). https://doi.org/10.1007/s13205-017-0902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0902-7

Keywords

Navigation