Skip to main content
Log in

Effect of glucose and olive oil as potential carbon sources on production of PHAs copolymer and tercopolymer by Bacillus cereus FA11

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, the influence of different physicochemical parameters on the yield of polyhydroxyalkanoates (PHAs) produced by Bacillus cereus FA11 is investigated. The physicochemical factors include pH, temperature, time, inoculum size and its age, agitation speed and composition of the glucose rich peptone deficient (GRPD) medium. During two-stage fermentation, B. cereus FA11 produced a significantly high (p < 0.05) yield (80.59% w/w) of PHAs copolymer using GRPD medium containing glucose (15 g/L) and peptone (2 g/L) at pH 7, 30 °C and 150 rpm after 48 h of incubation. On the other hand, the presence of olive oil (1% v/v) and peptone (2 g/L) in the GRPD medium resulted in biosynthesis of tercopolymer during two-stage fermentation and the yield of tercopolymer was 60.31% (w/w). The purified PHAs was characterized by Fourier transform infrared spectroscopy and proton resonance magnetic analysis. Proton resonance magnetic analysis confirmed that the tercopolymer was comprised of three different monomeric subunits, i.e., 3-hydroxybutyrate, 3-hydroxyvalerate and 6-hydroxyhexanoate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnold L, Demain J, Davis E (1999) Polyhydroxyalkanoates. Manual of microbiology and biotechnology. Am Soc Microbiol, Washington, pp 616–627

    Google Scholar 

  • Bhubalan K, Rathi D-N, Abe H et al (2010) Improved synthesis of P(3HB-co-3HV-co-3HHx) terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym Degrad Stab 95:1436–1442. doi:10.1016/j.polymdegradstab.2009.12.018

    Article  CAS  Google Scholar 

  • Brandrup J, Immergut E, Grulke EA (1990) Polymer handbook. Wiley, New York, vol 12, pp 265. doi:10.1016/0168-3659(90)90108-6

  • Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polym Lett 8:791–808

    Article  Google Scholar 

  • Cavalheiro JMBT, Raposo RS, de Almeida MCMD et al (2012) Effect of cultivation parameters on the production of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) and poly (3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necator using waste glycerol. Bioresour Technol 111:391–397. doi:10.1016/j.biortech.2012.01.176

    Article  CAS  Google Scholar 

  • Chaijamrus S, Udpuay N (2008) Production and Characterization of Polyhydroxybutyrate from Molasses and Corn Steep Liquor produced by Bacillus megaterium ATCC 6748. Agric Eng X:1–12

  • Cheema S, Bassas-Galia M, Sarma PM et al (2012) Exploiting metagenomic diversity for novel polyhydroxyalkanoate synthases: production of a terpolymer poly (3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate) with a recombinant Pseudomonas putida strain. Bioresour Technol 103:322–328. doi:10.1016/j.biortech.2011.09.098

    Article  CAS  Google Scholar 

  • Chen G-Q, Jiang X-R, Guo Y (2016) Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA). Synth Syst Biotechnol 1:236–242. doi:10.1016/j.synbio.2016.09.006

    Article  Google Scholar 

  • Foong CP, Lau N-S, Deguchi S et al (2014) Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater. BMC Microbiol 14:318. doi:10.1186/s12866-014-0318-z

    Article  Google Scholar 

  • Gomaa EZ (2014) Production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Braz Arch Biol Technol 57:145–154

    Article  CAS  Google Scholar 

  • Gowda V, Shivakumar S (2014) Agrowaste-based Polyhydroxyalkanoate (PHA) production using hydrolytic potential of Bacillus thuringiensis IAM 12077. Braz Arch Biol Technol 57:55–61

    Article  CAS  Google Scholar 

  • Grousseau E, Blanchet E, Déléris S et al (2014) Phosphorus limitation strategy to increase propionic acid flux towards 3-hydroxyvaleric acid monomers in Cupriavidus necator. Bioresour Technol 153:206–215. doi:10.1016/j.biortech.2013.11.072

    Article  CAS  Google Scholar 

  • Kshirsagar PR, Suttar R, Nilegaonkar SS et al (2013) Scale up production of polyhydroxyalkanoate (PHA) at different aeration, agitation and controlled dissolved oxygen levels in fermenter using Halomonas campisalis MCM B-1027. J Biochem Technol 4:512–517

    Google Scholar 

  • Kulkarni SO, Kanekar PP, Nilegaonkar SS et al (2010) Production and characterization of a biodegradable poly (hydroxybutyrate-co-hydroxyvalerate) (PHB-co-PHV) copolymer by moderately haloalkalitolerant Halomonas campisalis MCM B-1027 isolated from Lonar Lake, India. Bioresour Technol 101:9765–9771. doi:10.1016/j.biortech.2010.07.089

    Article  CAS  Google Scholar 

  • Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023. doi:10.1111/j.1365-2672.2009.04160.x

    Article  CAS  Google Scholar 

  • Kumar P, Singh M, Mehariya S et al (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi:10.1007/s12088-014-0457-9

    Article  CAS  Google Scholar 

  • Kumar P, Ray S, Patel SKS et al (2015) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9–16. doi:10.1016/j.ijbiomac.2015.03.046

    Article  CAS  Google Scholar 

  • Kumar P, Ray S, Kalia VC (2016) Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresour Technol 200:413–419. doi:10.1016/j.biortech.2015.10.045

    Article  CAS  Google Scholar 

  • Labuzek S, Radecka I (2001) Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J Appl Microbiol 90:353–357

    Article  CAS  Google Scholar 

  • Lee SY, Choi JIL (1999) Polyhydroxyalkanoates: biodegradable polymer. In: Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, 2nd edn. ASM, Washington, DC, pp 616–627

  • Liu H, Pancholi M, Stubbs J, Raghavan D (2010) Influence of hydroxyvalerate composition of polyhydroxy butyrate valerate (PHBV) copolymer on bone cell viability and in vitro degradation. J Appl Polym Sci 116:3225–3231. doi:10.1002/app.31915

    Article  CAS  Google Scholar 

  • López-Cuellar MR, Alba-Flores J, Rodríguez JNG, Pérez-Guevara F (2011) Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. Int J Biol Macromol 48:74–80. doi:10.1016/j.ijbiomac.2010.09.016

    Article  Google Scholar 

  • Masood F, Hasan F, Ahmed S, Hameed A (2011) Biosynthesis and characterization of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from Bacillus cereus FA11 isolated from TNT-contaminated soil. Ann Microbiol 62:1377–1384. doi:10.1007/s13213-011-0386-3

    Article  Google Scholar 

  • Masood F, Yasin T, Hameed A (2015a) Polyhydroxyalkanoates—what are the uses? Current challenges and perspectives. Crit Rev Biotechnol 35:514–521. doi:10.3109/07388551.2014.913548

    Article  Google Scholar 

  • Masood F, Yasin T, Hameed A (2015b) Production and characterization of Tailor- made polyhydroxyalkanoates by Bacillus cereus FC11. Pak J Zool 47:491–503

    Google Scholar 

  • Mizuno K, Kihara T, Tsuge T et al (2017) Cloning and heterologous expression of a novel subgroup of class IV polyhydroxyalkanoate synthase genes from the genus Bacillus. Biosci Biotechnol Biochem 81:194–196. doi:10.1080/09168451.2016.1230006

    Article  CAS  Google Scholar 

  • Mohd Zahari MAK, Ariffin H, Mokhtar MN et al (2012) Factors affecting Poly (3-hydroxybutyrate) production from Oil Palm Frond Juice by Cupriavidus necator (CCUG52238(T)). J Biomed Biotechnol 2012:125865. doi:10.1155/2012/125865

    Article  Google Scholar 

  • Monfreda M, Gobbi L, Grippa A (2014) Blends of olive oil and seeds oils: characterisation and olive oil quantification using fatty acids composition and chemometric tools. Part II. Food Chem 145:584–592. doi:10.1016/j.foodchem.2013.07.141

    Article  CAS  Google Scholar 

  • Muhammadi Shabina, Afzal M, Hameed S (2015) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8:56–77. doi:10.1080/17518253.2015.1109715

    Article  Google Scholar 

  • Narayanan A, Ramana KV (2012) Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico–chemical process parameters. 3 Biotech 2:287–296. doi:10.1007/s13205-012-0054-8

    Article  Google Scholar 

  • Patel SKS, Kumar P, Singh M et al (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi:10.1016/j.biortech.2014.11.029

    Article  CAS  Google Scholar 

  • Patel SKS, Lee J-K, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300. doi:10.1007/s12088-016-0595-3

    Article  CAS  Google Scholar 

  • Philip S, Sengupta S, Keshavarz T, Roy I (2009) Effect of impeller speed and pH on the production of poly (3-hydroxybutyrate) using Bacillus cereus SPV. Biomacromol 10:691–699. doi:10.1021/bm801395p

    Article  CAS  Google Scholar 

  • Quelas JI, Mesa S, Mongiardini EJ et al (2016) Regulation of polyhydroxybutyrate synthesis in the soil bacterium Bradyrhizobium diazoefficiens. Appl Environ Microbiol 82:4299–4308. doi:10.1128/AEM.00757-16

    Article  CAS  Google Scholar 

  • Rathi D-N, Persson EJ, Maurer FHJ, Sudesh K (2013) Biosynthesis of P(3HB-co-3HV-co-3HHp) terpolymer by Cupriavidus necator PHB-4 transformant harboring the highly active PHA synthase gene of Chromobacterium sp. USM2. Malays J Microbiol 9:140–146

    Google Scholar 

  • Ray S, Kalia VC (2017) Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoate co-polymer composition. Bioresour Technol 224:743–747. doi:10.1016/j.biortech.2016.11.089

    Article  CAS  Google Scholar 

  • Sato H, Murakami R, Padermshoke A et al (2004) Infrared spectroscopy studies of CH···O hydrogen bondings and thermal behavior of biodegradable poly (hydroxyalkanoate). Macromolecules 37:7203–7213. doi:10.1021/ma049117o

    Article  CAS  Google Scholar 

  • Singh M, Patel SK, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi:10.1186/1475-2859-8-38

    Article  Google Scholar 

  • Singh G, Kumari A, Mittal A et al (2013) Poly β-hydroxybutyrate production by Bacillus subtilis NG220 using sugar industry waste water. Biomed Res Int. doi:10.1155/2013/952641

    Google Scholar 

  • Tariq A, Hameed A, Bukhari H, Masood F (2015) Is atomic rearrangement of type IV PHA synthases responsible for increased PHA production? J Biomol Struct Dyn 33:1225–1238

    Article  CAS  Google Scholar 

  • Tomizawa S, Chuah J-A, Matsumoto K et al (2014) Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from Lignin derivatives. ACS Sustain Chem Eng 2:1106–1113. doi:10.1021/sc500066f

    Article  CAS  Google Scholar 

  • Tsuge T, Hyakutake M, Mizuno K (2015) Class IV polyhydroxyalkanoate (PHA) synthases and PHA-producing Bacillus. Appl Microbiol Biotechnol 99:6231–6240. doi:10.1007/s00253-015-6777-9

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Venkateswar Reddy M, Venkata Subhash G, Sarma PN (2010) Fermentative effluents from hydrogen producing bioreactor as substrate for poly (β-OH) butyrate production with simultaneous treatment: an integrated approach. Bioresour Technol 101:9382–9386. doi:10.1016/j.biortech.2010.06.109

    Article  CAS  Google Scholar 

  • Wei YH, Chen WC, Huang CK et al (2011) Screening and evaluation of polyhydroxybutyrate-producing strains from indigenous isolate Cupriavidus taiwanensis strains. Int J Mol Sci 12:252–265. doi:10.3390/ijms12010252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farha Masood or Abdul Hameed.

Ethics declarations

Funding

We thank Higher Education Commission (HEC) Pakistan for providing financial assistance under the Indigenous 5000 Ph.D. Fellowship Program to complete this research work.

Conflict of interest

Authors report no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, F., Abdul-Salam, M., Yasin, T. et al. Effect of glucose and olive oil as potential carbon sources on production of PHAs copolymer and tercopolymer by Bacillus cereus FA11. 3 Biotech 7, 87 (2017). https://doi.org/10.1007/s13205-017-0712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-017-0712-y

Keywords

Navigation