Skip to main content
Log in

Effect of gold nanoparticles on transmittance and conductance of graphene oxide thin films and efficiency of perovskite solar cells

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

The structural and optoelectronic properties of graphene oxide (GO) bulk material were studied, and conductance and transmittance of GO thin films in absence and presence of AuNPs were optimized for further applications. GO with 0.25 mg/mL and AuNPs (0.5 mL) on GO thin films (0.25 mg/mL) were observed to have highest transmittance of 75% and 72%, respectively, and highest conductance of 7.9 × 103 S and 8.2 × 103 S, respectively. Further, these thin films were utilized as a hole transport layer (HTL) for a prototype inverted perovskite solar cell structure. GO and AuNPs/GO deposited on FTO glass show efficiency of 1.35% and 1.25%, respectively. This decrease in efficiency is associated with the deteriorated crystalline structure of perovskite in the presence of AuNPs and similar HOMO level of AuNPs as of GO, which competes hole transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agresti A et al (2016) Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer. Adv Func Mater 26(16):2686–2694

    Article  CAS  Google Scholar 

  • Bhosale SS et al (2018) Functionalization of graphene oxide films with Au and MoOx nanoparticles as efficient p-contact electrodes for inverted planar perovskite solar cells. Adv Func Mater 28(37):1803200

    Article  Google Scholar 

  • Chaiyakun S et al (2012) Preparation and characterization of graphene oxide nanosheets. Procedia Eng 32:759–764

    Article  Google Scholar 

  • Chen X et al (2013) Insight into the efficiency enhancement of polymer solar cells by incorporating gold nanoparticles. Sol Energy Mater Sol Cells 111:1–8

    Article  CAS  Google Scholar 

  • Chou J-C et al (2015) Effect of different graphene oxide contents on dye-sensitized solar cells. IEEE J Photovolt 5(4):1106–1112

    Article  Google Scholar 

  • Chung C-C et al (2017) Inverted planar solar cells based on perovskite/graphene oxide hybrid composites. J Mater Chem A 5(27):13957–13965

    Article  CAS  Google Scholar 

  • Down MP et al (2018) Fabrication of graphene oxide supercapacitor devices. ACS Appl Energy Mater 1(2):707–714

    Article  CAS  Google Scholar 

  • Edri E et al (2014) Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3 − xClx perovskite solar cells. Nat Commun 5:3461

    Article  Google Scholar 

  • Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506

    Article  CAS  Google Scholar 

  • Haiss W et al (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79(11):4215–4221

    Article  CAS  Google Scholar 

  • Islam K et al (2014) Effect of gold nanoparticles size on light scattering for thin film amorphous-silicon solar cells. Sol Energy 103:263–268

    Article  CAS  Google Scholar 

  • Jeong HY et al (2010) Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett 10(11):4381–4386

    Article  CAS  Google Scholar 

  • Kimling J et al (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707

    Article  CAS  Google Scholar 

  • Kogo A, Sakai N, Tatsuma T (2012) Photoelectrochemical analysis of size-dependent electronic structures of gold clusters supported on TiO2. Nanoscale 4(14):4217–4221

    Article  CAS  Google Scholar 

  • Konios D et al (2016) Highly efficient organic photovoltaic devices utilizing work-function tuned graphene oxide derivatives as the anode and cathode charge extraction layers. J Mater Chem A 4(5):1612–1623

    Article  CAS  Google Scholar 

  • Kymakis E, Konios D (2018) Graphene oxide-like materials in organic and perovskite solar cells. In: The future of semiconductor oxides in next-generation solar cells. Elsevier, Amsterdam, pp 357–394

    Chapter  Google Scholar 

  • Lee H et al (2016a) Friction and conductance imaging of sp2- and sp3-hybridized subdomains on single-layer graphene oxide. Nanoscale 8(7):4063–4069

    Article  CAS  Google Scholar 

  • Lee D-Y, Na S-I, Kim S-S (2016b) Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale 8(3):1513–1522

    Article  CAS  Google Scholar 

  • Li S-S et al (2010) Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4(6):3169–3174

    Article  CAS  Google Scholar 

  • Li X et al (2014) Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers. IEEE J Sel Top Quantum Electron 20(5):441–447

    Article  Google Scholar 

  • Liu J et al (2012) Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv Mater 24(17):2228–2233

    Article  CAS  Google Scholar 

  • Liu Q, Leng C, Yuan J (2018) A planar heterojunction perovskite solar cell modified by graphene oxide. In: IOP conference series: materials science and engineering. IOP Publishing, Bristol

    Article  Google Scholar 

  • Lu L et al (2013) Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. Nano Lett 13(1):59–64

    Article  CAS  Google Scholar 

  • Luo H et al (2017) Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT: PSS hole transport layer. Nano-Micro Lett 9(4):39

    Article  Google Scholar 

  • Marcano DC et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  CAS  Google Scholar 

  • Murray IP et al (2011) Graphene oxide interlayers for robust, high-efficiency organic photovoltaics. J Phys Chem Lett 2(24):3006–3012

    Article  CAS  Google Scholar 

  • Najafi M et al (2018) Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers. Small 14(12):1702775

    Article  Google Scholar 

  • Nouri E, Mohammadi MR, Lianos P (2017) Inverted perovskite solar cells based on lithium-functionalized graphene oxide as an electron-transporting layer. Chem Commun 53(10):1630–1633

    Article  CAS  Google Scholar 

  • Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982

    Article  CAS  Google Scholar 

  • Pluchery O (2016) Gold nanoparticles with molecules make new electronic properties arise. http://www.insp.jussieu.fr/Gold-nanoparticles-with-molecules.html. Accessed 5 Aug 2019

  • Roy S et al (2011) Graphene oxide for electrochemical sensing applications. J Mater Chem 21(38):14725–14731

    Article  CAS  Google Scholar 

  • Shaikh AJ et al (2018) Plasmonic effects, size and biological activity relationship of Au-Ag alloy nanoparticles. J Nano Res 54:98–111

    Article  CAS  Google Scholar 

  • Verma S, Dutta RK (2015) A facile method of synthesizing ammonia modified graphene oxide for efficient removal of uranyl ions from aqueous medium. RSC Adv 5(94):77192–77203

    Article  CAS  Google Scholar 

  • Wu Z et al (2014) Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6(18):10505–10510

    Article  CAS  Google Scholar 

  • Yu JC et al (2018) Highly efficient and stable inverted perovskite solar cell employing PEDOT: GO composite layer as a hole transport layer. Sci Rep 8(1):1070

    Article  Google Scholar 

  • Zhao J et al (2010) Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 4(9):5245–5252

    Article  CAS  Google Scholar 

  • Zhang C et al (2017) Efficient perovskite solar cells by combination use of Au nanoparticles and insulating metal oxide. Nanoscale 9(8):2852–2864

    Article  CAS  Google Scholar 

  • Zhang X et al (2018) Graphene oxide as an additive to improve perovskite film crystallization and morphology for high-efficiency solar cells. RSC Adv 8(2):987–993

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research described in this paper was financially supported by the Higher Education Commission of Pakistan under National Research Program for Universities with reference no 20-3369/R&D/HEC/14/978 and by DAAD under the funding program of Research Stays for University Academics and Scientists, 2018 with ID: 57378441 and personal ref. no.: 91686952, awarded to Dr. AJ Shaikh. We are also thankful to Dr. Asad Muhammad Khan for the photoluminescence measurement of GO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sanjay Mathur or Ahson Jabbar Shaikh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawad, M., Khan, A.F., Waseem, A. et al. Effect of gold nanoparticles on transmittance and conductance of graphene oxide thin films and efficiency of perovskite solar cells. Appl Nanosci 10, 485–497 (2020). https://doi.org/10.1007/s13204-019-01134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-019-01134-x

Keywords

Navigation