Skip to main content

Advertisement

Log in

Coumarin–gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

In recent, the conjugation of gold nanoparticles (AuNPs) with biomolecules has shown great potential especially in disease diagnostics and treatment. Taking this in account, we report the methodology involved in the conjugation of coumarin onto the surface of citrate-capped AuNPs by a simple in situ method. Herein, we systematically performed UV–Vis spectroscopy, transmission electron microscopy, dynamic light scattering, and zeta potential measurements to characterize citrate-capped AuNPs and bioconjugates. Our results demonstrate in-depth surface chemistry of bioconjugates with improved surface plasmon resonance (529 nm), morphology (near spherical shape), hydrodynamic diameter (25.3 nm) as well as surface charge (− 35 mV). Furthermore, the bioconjugates displayed dose-dependent response in scavenging free radicals and exhibited cytotoxicity against MCF-7 breast cancer cell lines. In addition, phase-contrast microscopic analysis revealed that bioconjugates promote apoptosis in cancer cells in a time-dependent manner. Overall, we ascertain the fact that this kind of bioconjugation of AuNPs with coumarin further enhances the efficacy of inorganic nanomaterials and thus make them a better bio-therapeutic candidate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alea-Reyes A, González AC, Calpena D, Ramos-López JD, Lapuente L, Pérez-García (2017) Gemini pyridinium amphiphiles for the synthesis and stabilization of gold nanoparticles for drug delivery. J Colloid Interface Sci 502:172–183

    Article  Google Scholar 

  • Arvizo R, Bhattacharya R, Mukherjee P (2010) Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opin Drug Deliv 7:753–763

    Article  Google Scholar 

  • Ashat M, Goel N, Puri S, Pandey A, Singh A, Kaushal V (2014) Socio-demographic characteristics of cancer patients: Hospital based cancer registry in a tertiary care hospital of India. Indian J Cancer 51:1–4

    Article  Google Scholar 

  • Bantz C, Koshkina O, Lang T, Galla H-J, Kirkpatrick CJ, Stauber RH et al (2014) The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol 5:1774–1786

    Article  Google Scholar 

  • Bastus NG, Comenge J, Puntes V (2011) Kinetically controlled growth synthesis of citrate-stabilzed gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27:11098–11105

  • Brigger ICA, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36

    Article  Google Scholar 

  • Conde JCA, Doria G, Baptista P (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv 2012:1–12

    Article  Google Scholar 

  • Fisher B (1969) Systemic chemotherapy as an adjuvant to surgery in the treatment of breast cancer. Cancer 24:1286–1289

    Article  Google Scholar 

  • Gröber U (2009) Antioxidants and other micronutrients in complementary oncology. Breast Care 4:13–20

    Article  Google Scholar 

  • Häcker G (2000) The morphology of apoptosis. Cell Tissue Res 301:5–17

    Article  Google Scholar 

  • Haddada MB, Huebner M, Casale S, Knopp D, Niessner R, Salmain M, Boujday S (2016) Gold nanoparticles assembly on silicon and gold surfaces: mechanism, stability and efficiency in diclofenac biosensing. J Phys Chem C 120:29302–29311

    Article  Google Scholar 

  • Hindorff LA, Gillanders EM, Manolio TA (2011) Genetic architecture of cancer and other complex diseases: lessons learned and future directions. Carcinogenesis 32:945–954

    Article  Google Scholar 

  • Huang X, Wang J, Hao H, Wang Y, Ouyang J, Gao Y, Bao Y, Yin Q (2015) Determination and correlation of solubility and solution thermodynamics of coumarins in different pure solvents. Fluid Phase Equilib 394:148–155

    Article  Google Scholar 

  • Karthiga S, Kumar P (2018) Gold nanoparticles theathred cinnamic acids: preparation, characterization and cytotoxic effects on MCF-7 breast cancer cell lines. Appl Nanosci. https://doi.org/10.1007/s13204-018-0764-2

    Google Scholar 

  • Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  Google Scholar 

  • Kumar P, Senthamilselvi S, Govindaraju M (2014) Phloroglucinol-encapsulated starch biopolymer: preparation, antioxidant and cytotoxic effects on HepG2 liver cancer cell lines. RSC Adv 4:26787–26795

    Article  Google Scholar 

  • Lévy RCAB., Thanh NTK, Doty RC, Hussain I, Nichols RJ, Schiffrin DJ et al (2004) Rational and combinatorial design of peptide capping ligands for gold nanoparticles. J Am Chem Soc 126:10076–10084

    Article  Google Scholar 

  • Liang X-J, Chen C, Zhao Y, Wang PC (2010) Circumventing tumor resistance to chemotherapy by nanotechnology. In: Zhou J (eds) Multi-drug resistance in cancer. Methods in molecular biology (methods and protocols), vol 596. Humana Press, pp 467–488

  • Lu Y, Li Y, Wu W (2016) Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B 6:106–113

    Article  Google Scholar 

  • Luk BT, Zhang L (2014) Current advances in polymer-based nanotheranostics for cancer treatment and diagnosis. ACS Appl Mater Interfaces 6:21859–21873

    Article  Google Scholar 

  • Mehtala JG, Wei A (2014) Nanometric resolution in the hydrodynamic size analysis of ligand-stabilzed gold nanorods. Langmuir 30:13737

    Article  Google Scholar 

  • Merza KS, Al-Attabi HD, Abbas ZM, Yusr HA (2012) Comparative study on method for preparation of gold nanoparticles. Green Sustain Chem 2:26–28

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • Musa M, Cooperwood J, Khan MO (2008) A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr Med Chem 15:2664–2679

    Article  Google Scholar 

  • Nayak D, Minz AP, Ashe S, Rauta PR, Kumari M, Chopra P et al (2016) Synergistic combination of antioxidants, silver nanoparticles and chitosan in a nanoparticle based formulation: characterization and cytotoxic effect on MCF-7 breast cancer cell lines. J Colloid Interface Sci 470:142–152

    Article  Google Scholar 

  • Nghiem THL, La TH, Vu XH, Chu VH, Nguyen TH, Le QH et al (2010) Synthesis, capping and binding of colloidal gold nanoparticles to proteins. Adv Nat Sci 1:025009

    Google Scholar 

  • Nicolardi S, Yuri EM, Van Der Burgt JDC, Codée M, Wuhrer CH, Hokke F, Chiodo (2017) Structural characterization of biofunctionalized gold nanoparticles by ultrahigh-resolution mass spectrometry. ACS Nano 11:8257–8264

    Article  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA: Cancer J Clin 55:74–108

    Google Scholar 

  • Perez-Cruz K, Moncada-Basualto M, Morales-Valenzeuella J, Barriga-Gonzalez G, Navarrete-Encina P, Nuriez-Vergara L, Squella JA, Olea-Azar C (2018) Synthesis and antioxidant study of new polyphenolic hybrid coumarins. Arab J Chem 11:525–537

    Article  Google Scholar 

  • Piella J, Bastús NG, Puntes V (2016) Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28:1066–1075

    Article  Google Scholar 

  • Quester K, Avalos-Borja M, Vilchis-Nestor AR, Camacho-López MA, Castro-Longoria E (2013) SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by neurospora crassa extract. PLoS ONE 8:e77486

    Article  Google Scholar 

  • Qurieshi MA, Khan SMS, Masoodi MA, Qurieshi U, Ain Q, Jan Y et al (2016) Epidemiology of cancers in Kashmir, India: an analysis of hospital data. Adv Prev Med 2016:1–6

    Article  Google Scholar 

  • Razavi SM (2011) Plant coumarins as allelopathic agents. Int J Biol Chem 5:86–90

    Article  Google Scholar 

  • Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E et al (2013) Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074

    Article  Google Scholar 

  • Saraste A (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45:528–537

    Article  Google Scholar 

  • Tai A, Ohno A, Ito H (2016) Isolation and characterization of the 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation-scavenging reaction products of arbutin. J Agric Food Chem 64:7285–7290

    Article  Google Scholar 

  • Thakur A, Singla R, Jaitak V (2015) Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem 101:476–495

    Article  Google Scholar 

  • Tyagi H, Kushwaha A, Kumar A, Aslam M (2016) A facile pH controlled citrate-based reduction method for gold nanoparticles synthesis at room temperature. Nanoscale Res Lett 11:362

    Article  Google Scholar 

  • Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int 2013:1–14

    Article  Google Scholar 

  • Wang C, Sun A, Qiao Y, Zhang P, Ma L, Su M (2015) Cationic surface modification of gold nanoparticles for enhanced cellular uptake and X-ray radiation therapy. J Mater Chem B 3:7372–7376

    Article  Google Scholar 

  • Zhang L, Xue H, Gao C, Carr L, Wang J, Chu B et al (2010) Imaging and cell targeting characteristics of magnetic nanoparticles modified by a functionalizable zwitterionic polymer with adhesive 3,4-dihydroxyphenyl-l-alanine linkages. Biomaterials 31:6582–6588

    Article  Google Scholar 

  • Zhang W, Zeng Z, Wei J (2017) Electrochemical study of DPPH radical scavenging for evaluating the antioxidant capacity of carbon nanodots. J Phys Chem C 121:18635–18642

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Early Career Research Award (ECR/2016/001456) from the Science Engineering and Research Board (SERB), New Delhi, India financially supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Ponnuchamy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendran, G., Ponnuchamy, K. Coumarin–gold nanoparticle bioconjugates: preparation, antioxidant, and cytotoxic effects against MCF-7 breast cancer cells. Appl Nanosci 8, 447–453 (2018). https://doi.org/10.1007/s13204-018-0816-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-018-0816-7

Keywords

Navigation