Skip to main content
Log in

Functional diversity and resource partitioning in fungi associated with the fine feeder roots of forest trees

  • Review Article
  • Published:
Symbiosis Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aerts R (2002) The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal Ecology, Ecological Studies 157. Springer, Berlin, pp 117–133

    Google Scholar 

  • Abuzinadah RA, Read DJ (1988) Amino acids as nitrogen sources for ectomycorrhizal fungi: utilization of individual amino acids. T Brit Mycol Soc 91:473–479

    CAS  Google Scholar 

  • Agerer R (1991) Studies on ectomycorrhizae XXXIV. Mycorrhizae of Gomphidius glutinosus and of G. roseus with some remarks on Gomphidiaceae (Basidiomycetes). Nova Hedwigia 53:127–170

    Google Scholar 

  • Agrios GN (2005) Plant Pathology. Elsevier Press, Amsterdam

    Google Scholar 

  • Alexander T, Toth R, Meier R, Weber HC (1989) Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular-arbuscular mycorrhizae in grasses. Can J Bot 67:2505–2513

    Google Scholar 

  • Asiegbu FO, Adomas A, Stenlid J (2005) Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Pathol 6:395–409

    PubMed  Google Scholar 

  • Asiegbu FO, Daniel G, Johansson M (1993) Studies on the infection of Norway spruce roots by Heterobasidion annosum. Can J Bot 71:1552–1561

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1995) Saprophytic growth of arbuscular mycorrhizal fungi. In: Varma A (ed) Mycorrhiza. Springer-Verlag, New York, pp 391–407

    Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baldrian P, Voříšková J, Dobiášová P, Merhautová V, Lisá L, Valášková V (2011) Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil 338:111–125

    CAS  Google Scholar 

  • Barnett HL, Binder FL (1973) The fungal host-parasite relationship. Annu Rev Phytopathol 11:273–292

    Google Scholar 

  • Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ 51:449–459

    Google Scholar 

  • Baumgartner K, Coetzee M, Hoffmeister D (2011) Secrets of the subterranean pathosystem of Armillaria. Mol Plant Pathol 12:515–534

    PubMed  Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Soil 256:67–83

    CAS  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microb 74:738–744

    CAS  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    PubMed  Google Scholar 

  • Brundrett M (2006) Understanding the roles of multifunctional mycorrhizal and endophytic fungi. In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 281–293

    Google Scholar 

  • Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X et al (2013) Fine-root turnover rates of European forests revisited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362:357–372

    CAS  Google Scholar 

  • Buée M, de Boer W, Martin F, Van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 189–212

  • Buyer JS, Roberts DP, Russek-Cohen E (2002) Soil and plant effects on microbial community structure. J Microbiol 48:955–964

    CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohyd Res 344:1879–1900

    CAS  Google Scholar 

  • Cairney JWG, Burke RM (1994) Fungal enzymes degrading plant cell walls: their possible significance in the ectomycorrhizal symbiosis. Mycol Res 98:1345–1356

    CAS  Google Scholar 

  • Caldwell BA, Jumpponen A, Trappe JM (2000) Utilization of major detrital substrates by dark-septate, root endophytes. Mycologia 92:230–232

    Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: Consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    CAS  PubMed  Google Scholar 

  • Cázares E, Trappe J (1993) Vesicular endophytes in the roots of the Pinaceae. Mycorrhiza 2:153–156

    Google Scholar 

  • Cázares E, Smith JE (1996) Occurrence of vesicular-arbuscular mycorrhizae in Pseudotsuga menziesii and Tsuga heterophylla seedlings grown in Oregon Coast Range soils. Mycorrhiza 6:65–67

    Google Scholar 

  • Chen YL, Brundrett MC, Dell B (2000) Effects of ectomycorrhizas and vesicular–arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytol 146:545–555

    Google Scholar 

  • Daniel G, Asiegbu F, Johansson M (1998) The saprotrophic wood-degrading abilities of Heterobasidium annosum intersterility groups P and S. Mycol Res 102:991–997

    Google Scholar 

  • Deacon JW (1996) Ecological implications of recognition events in the pre-infection stages of root pathogens. New Phytol 133:135–145

    Google Scholar 

  • De Boer WD, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    PubMed  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1993) Compendium of Soil Fungi, vol 1. IHW-Verlag, Eching

    Google Scholar 

  • Downes GM, Alexander IJ, Cairney JWG (1992) A study of ageing of spruce [Picea sitchensis (Bong.) Carr.] ectomycorrhizas. I. Morphological and cellular changes in mycorrhizas formed by Tylospora fibrillosa (Burt.) Donk and Paxillus involutus (Batsch. ex Fr.) Fr. New Phytol 122:141–152

    Google Scholar 

  • Dunaevsky YE, Gruban TN, Belyakova GA, Belozersky MA (2006) Extracellular proteinases of filamentous fungi as potential markers of phytopathogenesis. Microbiology 75:649–652

    Google Scholar 

  • Egger KN (1986) Substrate hydrolysis patterns of post-fire Ascomycetes (Pezizales). Mycologia 78:771–780

    CAS  Google Scholar 

  • Egger KN (2006) The surprising diversity of ascomycetous mycorrhizas. New Phytol 170:421–423

    PubMed  Google Scholar 

  • Eissenstat DM, Yanai RD (2002) Root life span, efficiency, and turnover. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 221–238

    Google Scholar 

  • Erland S, Mahmood S, Jonsson T, Finlay RD (1999) Below-ground ectomycorrhizal community structure in two Picea abies forests in Southern Sweden. Scand J For Res 14:193–198

    Google Scholar 

  • Fernandez CW, McCormack ML, Hill JM, Pritchard SG, Koide RT (2013) On the persistence of Cenococcum geophilum ectomycorrhizas and its implications for forest carbon and nutrient cycles. Soil Biol Biochem 65:141–143

    CAS  Google Scholar 

  • Fisk MC, Fahey TJ, Sobieraj JH, Staniec AC, Crist TO (2011) Rhizosphere disturbance influences fungal colonization and community development on dead fine roots. Plant Soil 341:279–293

    CAS  Google Scholar 

  • Fogel R (1988) Interactions among soil biota in coniferous ecosystems. Agr Ecosyst Environ 24:69–85

    Google Scholar 

  • Fogel R, Hunt G (1983) Contribution of mycorrhizae and soil fungi to nutrient cycling in a Douglas-fir ecosystem. Can J For Res 13:219–232

    CAS  Google Scholar 

  • Foster RC, Marks GC (1967) Observations on the mycorrhizas of forest trees. II. The rhizosphere of Pinus radiata D. Don. Aust J Biol Sci 20:915–926

    Google Scholar 

  • Gams W, Diederich P, Poldmaa K (2011) Fungicolous Fungi. In: Foster MS, Bills GF (eds) Biodiversity of Fungi: Inventory and Monitoring Methods. Academic Press, pp 343–394

  • Gardes M, Dahlberg A (1996) Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol 133:147–157

    Google Scholar 

  • Garrett SD (1970) Pathogenic root-infecting fungi. Cambridge University Press

  • Girlanda M, Luppi Mosca AM (1995) Microfungi associated with ectomycorrhizae of Pinus halepensis Mill. Allionia 33:93–98

    Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  PubMed  Google Scholar 

  • Golubtsova YV, Glushakova AM, Chernov IY (2007) The seasonal dynamics of yeast communities in the rhizosphere of soddy-podzolic soils. Eurasian Soil Sci 40:875–879

    Google Scholar 

  • Goud JC (2003) Verticillium wilt in trees. Detection, prediction and disease management. Ph.D. thesis, Wageningen Universiteit, Wageningen, Netherlands

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    CAS  PubMed  Google Scholar 

  • Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecol Lett 9:399–409

    PubMed  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Google Scholar 

  • Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    CAS  Google Scholar 

  • Grelet GA, Johnson D, Vrålstad T, Alexander IJ, Anderson IC (2010) New insights into the mycorrhizal Rhizoscyphus ericae aggregate: spatial structure and co-colonization of ectomycorrhizal and ericoid roots. New Phytol 188:210–222

    CAS  PubMed  Google Scholar 

  • Gruber S, Seidl-Seiboth V (2012) Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology 158:26–34

    CAS  PubMed  Google Scholar 

  • Hadacek F, Kraus GF (2002) Plant root carbohydrates affect growth behaviour of endophytic microfungi. FEMS Microbial Ecol 41:161–170

    CAS  Google Scholar 

  • Hansen EM, Goheen DJ, Hessburd PF, Witchosky JJ, Schowalter TD (1988) Biology and management of black stain root disease in Douglas fir. In: Cobb FW (ed) Harrington TC. Leptographium root disease in conifers. American Phytopathological Society, St Paul, pp 63–80

    Google Scholar 

  • Hanson CA, Allison SD, Bradford MA, Wallenstein MD, Treseder KK (2008) Fungal taxa target different carbon sources in forest soil. Ecosystems 11:1157–1167

    CAS  Google Scholar 

  • Harley JL, Waid JS (1955) A method of studying active mycelia on living roots and other surfaces in the soil. T Brit Mycol Soc 38:104–118

    Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma spp. : Opportunistic avirulent plant symbionts. Nature Rev Microbiol 2:43–56

    CAS  Google Scholar 

  • Hietala AM (1997) The mode of infection of pathogenic uninucleate Rhizoctonia sp. in conifer seedling roots. Can J For Res 27:471–480

    Google Scholar 

  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569

    PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horton TR, Cázares E, Bruns TD (1998) Ectomycorrhizal, vesicular-arbuscular and dark septate fungal colonization of bishop pine (Pinus muricata) seedlings in the first 5 months of growth after wildfire. Mycorrhiza 8:11–18

    Google Scholar 

  • Howell CR (1982) Effect of Gliocladium virens on Pythium ultimum, Rhizoctonia solani, and damping-off of cotton seedlings. Phytopathology 72:496–498

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Google Scholar 

  • Howlett BJ (2006) Secondary metabolite toxins and nutrition of plant pathogenic fungi. Curr Opin Plant Biol 9:371–375

    CAS  PubMed  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, NJ

    Google Scholar 

  • Husband R, Herre EA, Turner SL, Gallery R, Young JPW (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    CAS  PubMed  Google Scholar 

  • Izumi H, Finlay RD (2011) Ectomycorrhizal roots select distinctive bacterial and ascomycete communities in Swedish subarctic forests. Environ Microbiol 13:819–830

    PubMed  Google Scholar 

  • Jahangeer S, Khan N, Jahangeer S, Sohail M, Shahzad S, Ahmad A, Khan SA (2005) Screening and characterization of fungal cellulases isolated from the native environmental source. Pakistan J Bot 37:739–748

    Google Scholar 

  • Jeffries P (1995) Biology and ecology of mycoparasitism. Can J Bot 73(S1):1284–1290

    Google Scholar 

  • Jeffries P, Young TWK (1994) Interfungal parasitic relationships. CAB International, Wallingford

    Google Scholar 

  • Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    CAS  PubMed  Google Scholar 

  • Joergensen RG (2000) Ergosterol and microbial biomass in the rhizosphere of grassland soils. Soil Biol Biochem 32:647–652

    CAS  Google Scholar 

  • Johnson NC, Graham H, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism - parasitism continuum. New Phytol 135:575–585

    Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    CAS  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes–are they mycorrhizal? Mycorrhiza 11:207–211

    Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Google Scholar 

  • Jumpponen A, Jones KL, Mattox JD, Yaege C (2010) Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol Ecol 19:41–53

    PubMed  Google Scholar 

  • Kernaghan G (2005) Mycorrhizal diversity: Cause and effect? Pedobiologia 49:511–520

    Google Scholar 

  • Kernaghan G, Patriquin G (2011) Host associations between fungal root endophytes and boreal trees. Microbial Ecol 62:460–473

    Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303

    CAS  Google Scholar 

  • Koide RT, Sharda JN, Herr JR, Malcolm GM (2008) Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytol 178:230–233

    PubMed  Google Scholar 

  • Kwaśna H, Łakomy P, Mallett K (2004) Reaction of Armillaria ostoyae to forest soil microfungi. Forest Pathol 34:147–162

    Google Scholar 

  • Kytöviita MM, Ruotsalainen AL (2007) Mycorrhizal benefit in two low arctic herbs increases with increasing temperature. Am J Bot 94:1309–1315

    PubMed  Google Scholar 

  • Lam CK, Belanger FC, White JF, Daie J (1994) Mechanism and rate of sugar uptake by Acremonium typhinum, an endophytic fungus infecting Festuca rubra: evidence for presence of a cell wall invertase in endophytic fungi. Mycologia 86:408–415

    CAS  Google Scholar 

  • Lapeyrie FF, Chilvers GA (1985) An endomycorrhiza-ectomycorrhiza succession associated with enhanced growth of Eucalyptus dumosa seedlings planted in a calcareous soil. New Phytol 100:93–104

    Google Scholar 

  • Latgé JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    PubMed  Google Scholar 

  • Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology 87:1399–1410

    PubMed  Google Scholar 

  • Lilja A, Rikala R (2000) Effect of uninucleate Rhizoctonia on Scots pine and Norway spruce seedlings. Forest Pathol 30:109–115

    Google Scholar 

  • Lindahl BD, Finlay RD, Cairney J (2005) Enzymatic activities of mycelia in mycorrhizal fungal communities. In: Dighton J, White JF Jr, Oudemans P (eds) The fungal community: its organization and role in the ecosystem. CRC Press, Boca Raton, pp 331–348

    Google Scholar 

  • Lodge DJ (1989) The influence of soil moisture and flooding on formation of VA-endo- and ectomycorrhizae in Populus and Salix. Plant Soil 117:255–262

    Google Scholar 

  • Lodge DJ, Wentworth TR (1990) Negative associations among VA-mycorrhizal fungi and some ectomycorrhizal fungi inhabiting the same root system. Oikos 57:347–356

    Google Scholar 

  • Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (ed) The Rhizosphere. Wiley, Chichester, pp 1–10

    Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189

    Google Scholar 

  • Mandyam K, Loughin T, Jumpponen A (2010) Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia 102:813–821

    PubMed  Google Scholar 

  • Manocha MS, Lee KY (1971) Host-parasite relations in mycoparasite. I. Fine structure of host, parasite, and their interface. Can J Bot 49:1677–1681

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Marschner P, Crowley D, Yang CH (2004) Development of specific rhizosphere bacterial communities in relation to plant species, nutrition and soil type. Plant Soil 261:199–208

    CAS  Google Scholar 

  • Mayerhofer MS, Kernaghan G, Harper KA (2013) The effects of fungal root endophytes on plant growth: a meta-analysis. Mycorrhiza 23:119–128

    PubMed  Google Scholar 

  • McCormack ML, Eissenstat DM, Prasad AM, Smithwick EA (2013) Regional scale patterns of fine root lifespan and turnover under current and future climate. Glob Change Biol 19:1697–1708

    Google Scholar 

  • Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J, Finlay R (2004) Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol Res 108:965–973

    CAS  PubMed  Google Scholar 

  • Mims CW, Sewall TC, Richardson EA (2000) Ultrastructure of the host-pathogen relationship in Entomosporium leaf spot disease of Photinia. Int J Plant Sci 161:291–295

    PubMed  Google Scholar 

  • Misbahuzzaman K, Newton A (2006) Effect of dual arbuscular-ectomycorrhizal inoculation on mycorrhiza formation and growth in E. camaldulensis Dehnh. seedlings under different nutrient regimes. Int J Agr Biol 8:848–854

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: An integrative plant-fungal process. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Molina R, Trappe JM (1982) Lack of mycorrhizal specificity by the ericaceous hosts Arbutus menziesii and Arctostaphylos uva-ursi. New Phytol 90:495–509

    Google Scholar 

  • Mosca AML, Marchisio VF (1985) Mycorrhizoplane fungal populations of Abies alba seedlings. Allionia 27:30–39

    Google Scholar 

  • Mougel C, Offre P, Ranjard L, Corberand T, Gamalero E, Robin C, Lemanceau P (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula Gaertn. cv. Jemalong line J5. New Phytol 170:165–175

    CAS  PubMed  Google Scholar 

  • Moyersoen B, Fitter AH (1999) Presence of arbuscular mycorrhizas in typically ectomycorrhizal host species from Cameroon and New Zealand. Mycorrhiza 8:247–253

    Google Scholar 

  • Müller MM, Valjakka R, Suokko A, Hantula J (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10:1801–1810

    PubMed  Google Scholar 

  • Nagendran S, Hallen-Adams HE, Aslam N, Walton JD (2009) Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet Biol 46:427–435

    CAS  PubMed  Google Scholar 

  • Neal JL, Bollen WB, Zak B (1964) Rhizosphere microflora associated with mycorrhizae of Douglas fir. Can J Microbiol 10:259–265

    Google Scholar 

  • Nehls U, Grunze N, Willmann M, Reich M, Kuester H (2007) Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 68:82–91

    CAS  PubMed  Google Scholar 

  • Nehls U, Göhringer F, Wittulsky S, Dietz S (2010) Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol 12:292–301

    CAS  PubMed  Google Scholar 

  • Neville J, Tessier JL, Morrison I, Scarratt J, Canning B, Klironomos JN (2002) Soil depth distribution of ecto- and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut. Appl Soil Ecol 19:209–216

    Google Scholar 

  • Newman EI (1985) The rhizosphere: carbon sources and microbial populations. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological Interactions in Soil. Br. Ecol Spec Publ 4 pp 107–121

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    CAS  PubMed  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    CAS  Google Scholar 

  • Olsson PA, Münzenberger B, Mahmood S, Erland S (2000) Molecular and anatomical evidence for a three-way association between Pinus sylvestris and the ectomycorrhizal fungi Suillus bovinus and Gomphidius roseus. Mycol Res 104:1372–1378

    Google Scholar 

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    PubMed  Google Scholar 

  • Parfitt D, Hunt J, Dockrell D, Rogers HJ, Boddy L (2010) Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecol 3:338–346

    Google Scholar 

  • Parkinson D, Thomas A (1969) Studies on fungi in the root region. Plant Soil 31:299–310

    Google Scholar 

  • Parrent JL, James TY, Vasaitis R, Taylor AF (2009) Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC evolutionary biology 9:148. doi:10.1186/1471-2148-9-148

    PubMed Central  PubMed  Google Scholar 

  • Paulitz TC, Menge JA (1986) The effects of a mycoparasite on the mycorrhizal fungus, Glomus deserticola. Phytopathology 76:351–354

    Google Scholar 

  • Paulitz TC, Linderman RG (1991) Lack of antagonism between the biocontrol agent Gliocladium virens* and vesicular arbuscular mycorrhizal fungi. New Phytol 117:303–308

    Google Scholar 

  • Perez-Naranjo JC (2009) Dark septate and arbuscular mycorrhizal fungal endophytes in roots of prairie grasses. Ph.D. Thesis, Dept. of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: Anatomy and Cell Biology. NRC Research Press, Ottawa

    Google Scholar 

  • Pintye A, Bereczky Z, Kovács GM, Nagy LG, Xu X, Legler SE, Váczy KZ, Caffi T, Rossi V, Kiss L (2012) No indication of strict host associations in a widespread mycoparasite: Grapevine powdery mildew (Erysiphe necator) is attacked by phylogenetically distant Ampelomyces strains in the field. Phytopathology 102:707–716

    CAS  PubMed  Google Scholar 

  • Raaijmakers J, Paulitz T, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Google Scholar 

  • Redfern DB, Filip GM (1991) Inoculum and infection. In: Shaw CG III, Kile GA (eds) Armillaria Root Disease Agriculture Handbook No. 691. United States Department of Agriculture Forest Service, Washington, DC, pp 48–61

  • Reignault P, Valette-Collet O, Boccara M (2008) The importance of fungal pectinolytic enzymes in plant invasion, host adaptability and symptom type. Eur J Plant Pathol 120:1–11

    CAS  Google Scholar 

  • Reininger V, Sieber TN (2012) Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers. PLoS ONE 7:e42865. doi:10.1371/journal.pone.0042865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rice AV, Currah RS (2006) Oidiodendron maius: Saprobe in sphagnum peat, mutualist in ericaceous roots? In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 227–246

    Google Scholar 

  • Rousseau A, Benhamou N, Chet I, Piché Y (1996) Mycoparasitism of the extramatrical phase of Glomus intraradices by Trichoderma harzianum. Phytopathology 86:434–443

    Google Scholar 

  • Rovira AD (1956) Plant root excretions in relation to the rhizosphere effect. Plant Soil 7:178–194

    Google Scholar 

  • Ruiz-Lozano JM, Azcón R, Gomez M (1995) Effects of arbuscular-mycorrhizal glomus species on drought tolerance: physiological and nutritional plant responses. Appl Environ Microb 61:456–460

    CAS  Google Scholar 

  • Salt GA (1977) The incidence of root-surface fungi on naturally regenerated Picea sitchensis seedlings in southeast Alaska. Forestry 50:113–115

    Google Scholar 

  • Schaarschmidt S, Roitsch T, Hause B (2006) Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J Exp Bot 57:4015–4023

    CAS  PubMed  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    CAS  PubMed  Google Scholar 

  • Schenck NC, Nicolson TH (1977) A zoosporic fungus occurring on species of Gigaspora margarita and other vesicular-arbuscular mycorrhizal fungi. Mycologia 69:1049–1053

    Google Scholar 

  • Schoener TW (1974) Resource partitioning in ecological communities. Science 185:27–39

    CAS  PubMed  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686

    PubMed  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In: Schulz B, Boyle C, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13

    Google Scholar 

  • Seiber TN (2002) Fungal root endophytes. In: Wasel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 887–917

    Google Scholar 

  • Shearer CA (1995) Fungal competition. Can J Bot 73(S1):1259–1264

    Google Scholar 

  • Smith WH (1969) Germination of Macrophomina phaseoli sclerotia as effected by Pinus lambertiana root exudate. Can J Microbiol 15:1387–1391

    CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal Symbiosis. Academic Press, New York

    Google Scholar 

  • Stone JK (1987) Initiation and development of latent infections by Rhabdocline parkeri on Douglas-fir. Can J Bot 65:2614–2621

    Google Scholar 

  • Straker CJ, Schnippenkoetter WH, Lemoine MC (1992) Analysis of acid invertase and comparison with acid phosphatase in the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf and Kernan. Mycorrhiza 2:63–67

    CAS  Google Scholar 

  • Summerbell RC (1987) The inhibitory effect of Trichoderma species and other soil microfungi on formation of mycorrhiza by Laccaria bicolor in vitro. New Phytol 105:437–448

    Google Scholar 

  • Summerbell RC (1989) Microfungi associated with the mycorrhizal mantle and adjacent microhabitats within the rhizosphere of black spruce. Can J Bot 67:1085–1095

    Google Scholar 

  • Summerbell RC (2005) Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud Mycol 53:121–145

    Google Scholar 

  • Sylvia DM, Schenck NC (1983) Soil fungicides for controlling chytridiaceous mycoparasites of Gigaspora margarita and Glomus fasciculatum. Appl Environ Microb 45:1306–1309

    CAS  Google Scholar 

  • Talbot JM, Bruns TD, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Peay KG (2012) Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition. Soil Biol Biochem 57:282–291

    Google Scholar 

  • Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–112

    Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    PubMed  Google Scholar 

  • Tedersoo L, Pärtel K, Jairus T, Gates G, Põldmaa K, Tamm H (2009) Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environ Microbiol 11:3166–3178

    CAS  PubMed  Google Scholar 

  • Tellenbach C, Grünig CR, Sieber TN (2011) Negative effects on survival and performance of Norway spruce seedlings colonized by dark septate root endophytes are primarily isolate-dependent. Environ Microbiol 13:2508–2517

    PubMed  Google Scholar 

  • Toju H, Yamamoto S, Sato H, Tanabe AS, Gilbert GS, Kadowaki K (2013) Community composition of root associated fungi in a Quercus dominated temperate forest:“codominance” of mycorrhizal and root endophytic fungi. Ecol Evol 3:1281–1293

    PubMed Central  PubMed  Google Scholar 

  • Tribak M, Ocampo JA, García-Romera I (2002) Production of xyloglucanolytic enzymes by Trichoderma viride, Paecilomyces farinosus, Wardomyces inflatus, and Pleurotus ostreatus. Mycologia 94:404–410

    CAS  PubMed  Google Scholar 

  • Turner IM (2001) The ecology of trees in the tropical rain forest. Cambridge Tropical Biology Series. Cambridge University Press, Cambridge

    Google Scholar 

  • Unestam T, Beyer-Ericson L, Strand M (1989) Involvement of Cylindrocarpon destructans in root death of Pinus sylvestris seedlings: pathogenic behaviour and predisposing factors. Scand J For Res 4:521–535

    Google Scholar 

  • Upson R, Read DJ, Newsham KK (2009) Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20:1–11

    PubMed  Google Scholar 

  • Uren NC (2001) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The Rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–39

    Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    CAS  PubMed  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    CAS  Google Scholar 

  • Van Den Boogert PHJF (1989) Nutritional requirements of the mycoparasitic fungus Verticillium biguttatum. Neth J Plant Pathol 95:149–156

    Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck M, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    CAS  PubMed  Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Edmonds RL (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies Amabilis ecosystems in Western Washington. Ecology 63:370–380

    Google Scholar 

  • Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996) Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187:159–219

    CAS  Google Scholar 

  • Vohník M, Mrnka L, Lukešová T, Bruzone MC, Kohout P, Fehrer J (2013) The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol 6:281–292

    Google Scholar 

  • Vujanovic V, Hamelin RC, Bernier L, Vujanovic G, St-Arnaud M (2007) Fungal diversity, dominance, and community structure in the rhizosphere of clonal Picea marina plants throughout nursery production chronosequences. Microbial Ecol 54:672–684

    CAS  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Müller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48

    CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  • Whiteside MD, Digman MA, Gratton E, Treseder KK (2012) Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol Biochem 55:7–13

    CAS  Google Scholar 

  • Wilcox HE (1983) Fungal parasitism of woody plant roots from mycorrhizal relationships to plant disease. Annu Rev Phytopathol 21:221–242

    Google Scholar 

  • Wilcox HE, Wang CJK (1987) Mycorrhizal and pathological associations of dematiaceous fungi in roots of 7-month-old tree seedlings. Can J For Res 17:884–899

    Google Scholar 

  • Yadeta KA, Thomma BP (2013) The xylem as battleground for plant hosts and vascular wilt pathogens. Front Plant Sci 4. doi:10.3389/fpls.2013.00097

  • Yoshida N, Fukushima T, Saito H, Shimosaka M, Okazaki M (1989) Cellulose and xylan degrading enzymes of the plant pathogenic fungus, Fusarium oxysporum SUF850. Agric Biol Chem 53:1829–1836

    CAS  Google Scholar 

  • Yu TEJ, Egger KN, Peterson RL (2001) Ectendomycorrhizal associations–characteristics and functions. Mycorrhiza 11:167–177

    CAS  Google Scholar 

  • Zhong C, Zhang Y, Chen Y, Jiang Q, Chen Z, Liang J, Pinyopusarerk K, Franche C, Bogusz D (2010) Casuarina research and applications in China. Symbiosis 50:107–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Kernaghan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kernaghan, G. Functional diversity and resource partitioning in fungi associated with the fine feeder roots of forest trees. Symbiosis 61, 113–123 (2013). https://doi.org/10.1007/s13199-013-0265-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-013-0265-8

Keywords

Navigation