Skip to main content
Log in

Pervaporation-based membrane processes for the production of non-alcoholic beverages

  • Review Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Nowadays, the interest in manufacturing non-alcoholic or low alcoholic content beverages from alcoholic beverages is a current challenge for food technologists; this is due to the fact that huge consumption of alcoholic beverages may produce health problems in the costumers. In principle, the post-fermentation ethanol removal from alcoholic beverages is carried out by means of evaporation or distillation. Such current dealcoholization methodologies are efficiently removing the ethanol, however, some organoleptic compounds can also be lost during the process. This makes the dealcoholization process highly sensitive in order to preserve the quality properties of the beverages. Thereby, membrane-based technologies, which use perm-selective barriers for the separation, have been highly promoted for such purpose. Pervaporation (PV) technology is indeed one of these technologies aimed for ethanol removal. Herein, the goal of this review is to provide a compelling overview of the most relevant findings for the production of non-alcoholic beverages (such as beer and wine) by means of PV. Particular attention is paid to experimental results which provide compelling feedback about the accurate ethanol removal and minimal changes on physicochemical properties of the beverages. Moreover, some theoretical basis of such technology, as well as key criteria for a more efficient dealcoholization, are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Taken from Baker et al. (2010)

Fig. 3

Adapted from Catarino and Mendes (2011b)

Fig. 4

Adapted from Salgado et al. (2017)

Similar content being viewed by others

References

  • Afonso C, Crespo J, Anastas P (2015) Green separation processes: fundamentals and applications, 1st edn. Wiley, Weinheim, pp 1–383

  • Andrés-Iglesias C, García-Serna J, Montero O, Blanco CA (2015) Simulation and flavor compound analysis of dealcoholized beer via one-step vacuum distillation. Food Res Int 76:751–760

    Article  CAS  PubMed  Google Scholar 

  • Andrés-Iglesias C, Blanco CA, García-Serna J, Pando V, Montero O (2016) Volatile compound profiling in commercial lager regular beers and derived alcohol-free beers after dealcoholization by vacuum distillation. Food Anal Methods 9(11):3230–3241

    Article  Google Scholar 

  • Baker RW, Wijmans JG, Huang Y (2010) Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data. J Membr Sci 348(1–2):346–352

    Article  CAS  Google Scholar 

  • Bartolomé B, Peña-Neira A, Gómez-Cordovés C (2000) Phenolics and related substances in alcohol-free beers. Eur Food Res Technol 210(6):419–423

    Article  Google Scholar 

  • Belisario-Sánchez YY, Taboada-Rodríguez A, Marín-Iniesta F, Iguaz-Gainza A, López-Gómez A (2012) Aroma recovery in wine dealcoholization by SCC distillation. Food Bioprocess Technol 5(6):2529–2539

    Article  CAS  Google Scholar 

  • Blanco CA, Andrés-Iglesias C, Montero O (2016) Low-alcohol beers: flavor compounds, defects, and improvement strategies. Crit Rev Food Sci Nutr 56(8):1379–1388

    Article  CAS  PubMed  Google Scholar 

  • Brányik T, Silva DP, Baszczyňski M, Lehnert R, Almeida E (2012) A review of methods of low alcohol and alcohol-free beer production. J Food Eng 108(4):493–506

    Article  CAS  Google Scholar 

  • Brazinha C, Crespo JG (2014) Valorization of food processing streams for obtaining extracts enriched in biologically active compounds. In: Cassano A, Drioli E (eds) Integrated membrane operations in the food production, 1st edn. Degruyter, Berlin, pp 295–310

    Google Scholar 

  • Cartron E, Fouret G, Carbonneau MA, Lauret C, Michel F, Monnier L et al (2003) Red-wine beneficial long-term effect on lipids but not on antioxidant characteristics in plasma in a study comparing three types of wine—description of two O-methylated derivatives of gallic acid in humans. Free Radic Res 37(9):1021–1035

    Article  CAS  PubMed  Google Scholar 

  • Cassano A, Conidi C, Ruby-Figueroa R, Castro-Muñoz R (2018) Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. Int J Mol Sci 19(2):351. https://doi.org/10.3390/ijms19020351

    Article  CAS  PubMed Central  Google Scholar 

  • Castro-Muñoz R, Fíla V (2018) Membrane-based technologies as an emerging tool for separating high-added-value compounds from natural products. Trends Food Sci Technol 82:8–20

    Article  CAS  Google Scholar 

  • Castro-Muñoz R, Yáñez-Fernández J, Fíla V (2016) Phenolic compounds recovered from agro-food by-products using membrane technologies: an overview. Food Chem 213:753–762

    Article  CAS  PubMed  Google Scholar 

  • Castro-Muñoz R, Fíla V, Barragán-Huerta BE, Yáñez-Fernández J, Piña-Rosas JA, Arboleda-Mejía J (2017) Processing of Xoconostle fruit (Opuntia joconostle) juice for improving its commercialization using membrane filtration. J Food Process Preserv. https://doi.org/10.1111/jfpp.13394

    Article  Google Scholar 

  • Castro-Muñoz R, Conidi C, Cassano A (2018a) Membrane-based technologies for meeting the recovery of biologically active compounds from foods and their by-products. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2018.1478796

    Article  PubMed  Google Scholar 

  • Castro-Muñoz R, De La Iglesia Ó, Fila V, Téllez C, Coronas J (2018b) Pervaporation-assisted esterification reactions by means of mixed matrix membranes. Ind Eng Chem Res 57:15998–16011

    Article  CAS  Google Scholar 

  • Castro-Muñoz R, Galiano F, Fíla V, Drioli E, Figoli A (2018c) Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: current state of the art. Rev Chem Eng. https://doi.org/10.1515/revce-2017-0115

    Article  Google Scholar 

  • Catarino M, Mendes A (2011a) Dealcoholizing wine by membrane separation processes. Innov Food Sci Emerg Technol 12(3):330–337

    Article  CAS  Google Scholar 

  • Catarino M, Mendes A (2011b) Non-alcoholic beer—a new industrial process. Sep Purif Technol 79(3):342–351

    Article  CAS  Google Scholar 

  • Catarino M, Ferreira A, Mendes A (2009) Study and optimization of aroma recovery from beer by pervaporation. J Membr Sci 341(1–2):51–59

    Article  CAS  Google Scholar 

  • Chuntanalerg P, Kulprathipanja S, Chaisuwan T, Aungkavattana P, Hemra K, Wongkasemjit S (2016) Performance polybenzoxazine membrane and mixed matrix membrane for ethanol purification via pervaporation applications. J Chem Technol Biotechnol 91(4):1173–1182

    Article  CAS  Google Scholar 

  • Claes S, Vandezande P, Mullens S, Leysen R, De Sitter K, Andersson A et al (2010) High flux composite PTMSP-silica nanohybrid membranes for the pervaporation of ethanol/water mixtures. J Membr Sci 351(1–2):160–167

    Article  CAS  Google Scholar 

  • Cleophas TJ (1999) Wine, beer and spirits and the risk of myocardial infarction: a systematic review. Biomed Pharmacother 53(9):417–423

    Article  CAS  PubMed  Google Scholar 

  • Costanzo S, Di Castelnuovo A, Donati MB, Iacoviello L, de Gaetano G (2010) Alcohol consumption and mortality in patients with cardiovascular disease. A meta-analysis. J Am Coll Cardiol 55(13):1339–1347

    Article  PubMed  Google Scholar 

  • Crespo J, Brazinha C (2015) Fundamentals of pervaporation. In: Basile A, Figoli A, Khayet M (eds) Pervaporation, vapour permeation and membrane distillation: principles and applications. Elsevier, Cambridge, pp 1–17

    Google Scholar 

  • Figoli A, Santoro S, Galiano F, Basile A (2015) Pervaporation membranes: preparation, characterization, and application. In: Basile A, Figoli A, Khayet M (eds) Pervaporation, vapour permeation and membrane distillation, 1st edn. Elsevier, Cambridge, pp 281–304

    Google Scholar 

  • Galanakis CM (2013) Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod Process 91(4):575–579

    Article  CAS  Google Scholar 

  • Galanakis CM (2015) Separation of functional macromolecules and micromolecules: from ultrafiltration to the border of nanofiltration. Trends Food Sci Technol 42(1):44–63

    Article  CAS  Google Scholar 

  • Galanakis CM, Kotanidis A, Dianellou M, Gekas V (2015) Phenolic content and antioxidant capacity of Cypriot wines. Czech J Food Sci 33(2):126–136

    Article  CAS  Google Scholar 

  • Gómez-Plaza E, López-Nicolás JM, López-Roca JM, Martínez-Cutillas A (1999) Dealcoholization of wine. Behaviour of the aroma components during the process. LWT Food Sci Technol 32(6):384–386

    Article  Google Scholar 

  • Gu J, Shi X, Bai Y, Zhang H, Zhang L, Huang H (2009) Silicalite-filled polyether-block-amides membranes for recovering ethanol from aqueous solution by pervaporation. Chem Eng Technol 32(1):155–160

    Article  CAS  Google Scholar 

  • Guilford JM, Pezzuto JM (2011) Wine and health: a review. Am J Enol Viticult 62(4):471–486

    Article  CAS  Google Scholar 

  • Hoof V, Van Abeele L, Buekenhoudt A, Dotremont C, Leysen R (2004) Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Sep Purif Technol 37:33–49

    Article  CAS  Google Scholar 

  • Huang Y, Zhang P, Fu J, Zhou Y, Huang X, Tang X (2009) Pervaporation of ethanol aqueous solution by polydimethylsiloxane/polyphosphazene nanotube nanocomposite membranes. J Membr Sci 339(1–2):85–92

    Article  CAS  Google Scholar 

  • Le NL, Wang Y, Chung TS (2011) Pebax/POSS mixed matrix membranes for ethanol recovery from aqueous solutions via pervaporation. J Membr Sci 379(1–2):174–183

    Article  CAS  Google Scholar 

  • Lehnert R, Novák P, Macieira F, Kuřec M, Teixeira JA, Brányik T (2009) Optimisation of lab-scale continuous alcohol-free beer production. Czech J Food Sci 27(4):267–275

    Article  CAS  Google Scholar 

  • Li Y, Wee LH, Martens J, Vankelecom IFJ (2014) ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery. J Mater Chem A 2:10034–10040

    Article  CAS  Google Scholar 

  • Liguori L, De Francesco G, Russo P, Perretti G, Albanese D, Di Matteo M (2016) Quality attributes of low-alcohol top-fermented beers produced by membrane contactor. Food Bioprocess Technol 9(1):191–200

    Article  CAS  Google Scholar 

  • Liguori L, Russo P, Albanese D, Di Matteo M (2018) Production of low-alcohol beverages: current status and perspectives, food processing for increased quality and consumption. Elsevier Inc., Amsterdam

    Google Scholar 

  • Lipnizki F (2014) Beer dealcoholization. In: Drioli E, Giorno L (eds) Encyclopedia of membranes, 1st edn. Springer, Berlin, pp 1–2

    Google Scholar 

  • Lipnizki F, Olsson J, Trägårdh G (2002) Scale-up of pervaporation for the recovery of natural aroma compounds in the food industry part 2: optimisation and integration. J Food Eng 54(3):197–205

    Article  Google Scholar 

  • Liu X, Hu D, Li M, Zhang J, Zhu Z, Zeng G et al (2015) Preparation and characterization of silicalite-1/PDMS surface sieving pervaporation membrane for separation of ethanol/water mixture. J Appl Polym Sci 132(34):1–11

    Article  CAS  Google Scholar 

  • Lugasi A, Hóvári J (2003) Antioxidant properties of commercial alcoholic and nonalcoholic beverages. Nahrung/Food 47(2):79–86

    Article  CAS  PubMed  Google Scholar 

  • Mangindaan D, Khoiruddin K, Wenten IG (2018) Beverage dealcoholization processes: past, present, and future. Trends Food Sci Technol 71:36–45

    Article  CAS  Google Scholar 

  • Mohammadi T, Aroujalian A, Bakhshi A (2005) Pervaporation of dilute alcoholic mixtures using PDMS membrane. Chem Eng Sci 60(7):1875–1880

    Article  CAS  Google Scholar 

  • Müller M, Bellut K, Tippmann J, Becker T (2017) Physical methods for dealcoholization of beverage matrices and their impact on quality attributes. ChemBioEng Rev 5:310–326

    Article  CAS  Google Scholar 

  • Naik PV, Verlooy PLH, Smet S, Martens JM, Vankelecom IFJ (2016a) PDMS mixed matrix membranes filled with novel PSS-2 nanoparticles for ethanol/water separation by pervaporation. RSC Adv 6:78648–78651

    Article  CAS  Google Scholar 

  • Naik PV, Kerkhofs S, Martens JA, Vankelecom IFJ (2016b) PDMS mixed matrix membranes containing hollow silicalite sphere for ethanol/water separation by pervaporation. J Membr Sci 502:48–56

    Article  CAS  Google Scholar 

  • Nardini M, Natella F, Scaccini C, Ghiselli A (2006) Phenolic acids from beer are absorbed and extensively metabolized in humans. J Nutr Biochem 17(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Nardini M, Forte M, Vrhovsek U, Mattivi F, Viola R, Scaccini C (2009) White wine phenolics are absorbed and extensively metabolized in humans. J Agric Food Chem 57(7):2711–2718

    Article  CAS  PubMed  Google Scholar 

  • Olaniran AO, Hiralal L, Mokoena MP, Pillay B (2017) Flavour-active volatile compounds in beer: production, regulation and control. J Inst Brew 123(1):13–23

    Article  CAS  Google Scholar 

  • Olmo Á, Blanco CA, Palacio L, Prádanos P, Hernández A (2014) Pervaporation methodology for improving alcohol-free beer quality through aroma recovery. J Food Eng 133:1–8

    Article  CAS  Google Scholar 

  • Paixão N, Perestrelo R, Marques JC, Câmara JS (2007) Relationship between antioxidant capacity and total phenolic content of red, rosé and white wines. Food Chem 105(1):204–214

    Article  CAS  Google Scholar 

  • Partanen TJ, Vainio HU, Ojajärvi IA, Kauppinen TP (1997) Pancreas cancer, tobacco smoking and consumption of alcoholic beverages: a case-control study. Cancer Lett 116(1):27–32

    Article  CAS  PubMed  Google Scholar 

  • Purwasasmita M, Kurnia D, Mandias FC, Wenten K (2015) Beer dealcoholization using non-porous membrane distillation. Food Bioprod Process 94:180–186

    Article  CAS  Google Scholar 

  • Raisi A, Aroujalian A, Kaghazchi T (2009) A predictive mass transfer model for aroma compounds recovery by pervaporation. J Food Eng 95(2):305–312

    Article  CAS  Google Scholar 

  • Saffarionpour S, Ottens M (2018) Recent advances in techniques for flavor recovery in liquid food processing. Food Eng Rev 10(2):81–94

    Article  CAS  Google Scholar 

  • Salgado CM, Fernández-Fernández E, Palacio L, Carmona FJ, Hernández A, Prádanos P (2017) Application of pervaporation and nanofiltration membrane processes for the elaboration of full flavored low alcohol white wines. Food Bioprod Process 101:11–21

    Article  CAS  Google Scholar 

  • Samanta HS, Ray SK (2015) Separation of ethanol from water by pervaporation using mixed matrix copolymer membranes. Sep Purif Technol 146:176–186

    Article  CAS  Google Scholar 

  • Schmidtke LM, Blackman JW, Agboola SO (2012) Production technologies for reduced alcoholic wines. J Food Sci 77(1):25–41

    Article  CAS  Google Scholar 

  • Sohrabvandi S, Mousavi SM, Razavi SH, Mortazavian AM, Rezaei K (2010a) Alcohol-free beer: methods of production, sensorial defects, and healthful effects. Food Rev Int 26(4):335–352

    Article  Google Scholar 

  • Sohrabvandi S, Mousavi S, Razavi S, Mortazavian A, Issn S, Amir M (2010b) Bacteria in beer viability of probiotic bacteria in low alcohol-and non-alcoholic beer during refrigerated storage. Philipp Agric Sci 93(1):104–108

    Google Scholar 

  • Sohrabvandi S, Mortazavian AM, Rezaei K (2012) Health-related aspects of beer: a review. Int J Food Prop 15(2):350–373

    Article  CAS  Google Scholar 

  • Solov AM (2018) Global production and consumption of alcoholic beverages. Stud Russ Econ Dev 29(1):102–108

    Article  Google Scholar 

  • Statista (2018) Alcoholic beverages consumption. Retrieved September 15, 2018, from https://www.statista.com/

  • Strejc J, Siristova L, Karabin M, Almeida JB, Branyik T (2013) Production of alcohol-free beer with elevated amounts of flavouring compounds using lager yeast mutants. J Inst Brew 119(3):149–155

    CAS  Google Scholar 

  • Sun D, Li BB, Xu ZL (2013) Pervaporation of ethanol/water mixture by organophilic nano-silica filled PDMS composite membranes. Desalination 322:159–166

    Article  CAS  Google Scholar 

  • Takács L, Vatai G, Korány K (2007) Production of alcohol free wine by pervaporation. J Food Eng 78(1):118–125

    Article  CAS  Google Scholar 

  • Tan SJ, Xiao ZY, Li L, Wu FW, Xu ZH, Zhang ZB (2003) Experimental research on dealcoholization of wine by pervaporation. Jingxi Huagong/Fine Chem 20(2):69–79

    CAS  Google Scholar 

  • van Golde P, Sloots L, Vermeulen W, Wielders J, Hart H, Bonno B, van de Wiel A (1999) The role of alcohol in the anti low density lipoprotein oxidation activity of red wine. Atherosclerosis 147:365–370

    Article  PubMed  Google Scholar 

  • Wee SL, Tye CT, Bhatia S (2008) Membrane separation process-pervaporation through zeolite membrane. Sep Purif Technol 63(3):500–516

    Article  CAS  Google Scholar 

  • WHO (2011) Global status report on alcohol and health. Geneva, Switzerland

  • Wijmans JG, Baker RW (1995) The solution–diffusion model: a review. J Membr Sci 107(1–2):1–21

    Article  CAS  Google Scholar 

  • Yadav A, Lind ML, Ma X, Lin YS (2013) Nanocomposite silicalite-1/polydimethylsiloxane membranes for pervaporation of ethanol from dilute aqueous solutions. Ind Eng Chem Res 52:5207–5212

    Article  CAS  Google Scholar 

  • Zhan X, Lu J, Tan T, Li J (2012) Mixed matrix membranes with HF acid etched ZSM-5 for ethanol/water separation: preparation and pervaporation performance. Appl Surf Sci 259:547–556

    Article  CAS  Google Scholar 

  • Zhang G, Li J, Wang N, Fan H, Zhang R, Zhang G, Ji S (2015) Enhanced flux of polydimethylsiloxane membrane for ethanol permselective pervaporation via incorporation of MIL-53 particles. J Membr Sci 492:322–330

    Article  CAS  Google Scholar 

  • Zhou H, Su Y, Chen X, Wan Y (2011) Separation of acetone, butanol and ethanol (ABE) from dilute aqueous solutions by silicalite-1/PDMS hybrid pervaporation membranes. Sep Purif Technol 79(3):375–384

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. Castro-Muñoz acknowledges the European Commission—Education, Audiovisual and Culture Executive Agency (EACEA) for his PhD scholarship under the program: Erasmus Mundus Doctorate in Membrane Engineering—EUDIME (FPA No 2011-0014, Edition V, http:/eudime.unical.it).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Castro-Muñoz.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro-Muñoz, R. Pervaporation-based membrane processes for the production of non-alcoholic beverages. J Food Sci Technol 56, 2333–2344 (2019). https://doi.org/10.1007/s13197-019-03751-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-019-03751-4

Keywords

Navigation