Skip to main content

Advertisement

Log in

Development of a rapid PCR protocol to detect Vibrio parahaemolyticus in clams

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

Vibrio parahaemolyticus is part of the natural microflora of estuarine and coastal marine waters and can be also present in seafood, especially shellfish and bivalve molluscs. In this study we compared the reference cultural method ISO 6887-3 with two molecular methods, multiplex PCR and real-time PCR, for the detection of two distinct genetic markers (tlh species-specific gene and tdh virulence gene) of V. parahaemolyticus in bivalve mollusc. The analyses were performed on clams inoculated with V. parahaemolyticus ATCC 43996 at T0 and after a 3 and 6 h of pre-enrichment in alkaline saline peptone water. Counts on agar plates were largely inaccurate, probably due to other Vibrio species grown on the TCBS selective agar. Multiplex PCR assays, performed using primers pairs for tdh and tlh genes, showed a detection limit of 104 CFU/g of shell stock within 6 h of pre-enrichment, respecting however the action level indicated by the National Seafood Sanitation Program guideline. Detection by tdh gene in real-time PCR reached the definitely highest sensitivity in shorter times, 101 CFU/g after 3 h of pre-enrichment, while the sensitivity for the tlh gene was not promising, detecting between 105 and 106 CFU/g after 6 h of pre-enrichment. Our findings provide a rapid routine method of detection of V. parahaemolyticus based on tdh gene by real-time PCR for commercial seafood analysis to identify the risk of gastrointestinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anonymous (2003) ISO 6887–3: 2003 Microbiology of food and animal feeding stuffs—preparation of test samples, initial suspension and decimal dilutions for microbiological examination—Part 3: Specific rules for the preparation of fish and fishery products. International Organization for Standardization (ISO) 1, Geneva, Switzerland

  • Baffone W, Tarsi R, Pane L, Campana R, Repetto B, Mariottini GL, Pruzzo C (2006) Detection of free-living and plankton-bound vibrios in coastal waters of the Adriatic Sea (Italy) and study of their pathogenicity-associated properties. Environ Microbiol 8:1299–1305

    Article  CAS  Google Scholar 

  • Barker WHJ (1974) Vibrio parahaemolyticus outbreaks in the United States. Lancet I 303:551–554

    Article  Google Scholar 

  • Bates TC, Oliver JD (2004) The viable but nonculturable state of Kanagawa positive and negative strains of Vibrio parahaemolyticus. J Microbiol 42:74–79

    Google Scholar 

  • Bej AK, Patterson DP, Brasher CW, Vickery MC, Jones DD, Kaysner CA (1999) Detection of total and hemolysin-producing Vibrio parahaemolyticus in shellfish using multiplex PCR amplification of tlh, tdh, and trh. J Microbiol Met 36:215–225

    Article  CAS  Google Scholar 

  • Bisha B, Simonson J, Janes M, Bauman K, Goodrige LD (2012) A review of the current status of cultural and rapid detection of Vibrio parahaemolyticus. Int J Food Sci Technol 47:885–899

    Article  CAS  Google Scholar 

  • Campbell MS, Wright AC (2003) Real-time PCR analysis of Vibrio vulnificus from oysters. Appl Environ Microb 69:7137–7144

    Article  CAS  Google Scholar 

  • Cook DW, Bowers JC, DePaola A (2002) Density of total and pathogenic (tdh +) Vibrio parahaemolyticus in Atlhantic and Gulf coast molluscan shellfish at harvest. J Food Protect 65:1873–1880

    Article  Google Scholar 

  • Croci L, Suffredini E, Cozzi L, Toti L, Ottaviani D, Pruzzo C, Serratore P, Fischetti R, Goffredo E, Loffredo G, Mioni R (2007) Comparison of different biochemical and molecular methods for the identification of Vibrio parahaemolyticus. J Appl Microbiol 102:229–237

    Article  CAS  Google Scholar 

  • DePaola A, Nordstrom J, Bowers C, Wells J, Cook D (2003) Seasonal abundance of total and pathogenic Vibrio parahaemolyticus in Alabama oysters. Appl Environ Microbiol 69:1521–1526

    Article  CAS  Google Scholar 

  • Deter J, Lozach S, Veron A, Chollet J, Derrien A, Hervio-Heath D (2010) Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophylla. Environ Microbiol 12:929–937

    Article  Google Scholar 

  • Dey MM (2015) World and U.S. demand and supply relationships for seafood: implications for aquaculture producers. Aquac Mag 41(2):44–45

    Google Scholar 

  • Diana JS (2009) Aquaculture production and biodiversity conservation. J Biosci 59:27–38

    Article  Google Scholar 

  • Eddabra R, Piemont Y, Scheftel JM (2011) Evaluation of a new chromogenic medium, chromID Vibrio, for the isolation and presumptive identification of Vibrio cholerae and Vibrio parahaemolyticus from human clinical specimens. Eur J Clin Microbiol 30:733–737

    Article  CAS  Google Scholar 

  • FAO (2015) Fishery statistical collections: global capture production. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Garrido A, Chapela MJ, Ferreira M, Atanassova M, Fajardo P, Lago J, Vieites JM, Lago J, Vieites JM, Cabado AG (2012) Development of a multiplex real-time PCR method for pathogenic Vibrio parahaemolyticus detection (tdh + and trh +). Food Control 24:128–135

    Article  CAS  Google Scholar 

  • Garrido-Maestu A, Chapela MJ, Peñaranda E, Vieites JM, Cabado AG (2014) In-house validation of novel multiplex real-time PCR gene combination for the simultaneous detection of the main human pathogenic vibrios (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus). Food Control 37:371–379

    Article  CAS  Google Scholar 

  • Hayat-Mahmud Z, Kassu A, Mohammad A, Yamato M, Bhuiyan NA, BalakrishNair G, Ota F (2006) Isolation and molecular characterization of toxigenic Vibrio parahaemolyticus from the Kii Channel, Japan. Microbiol Res 161:25–37

    Article  Google Scholar 

  • He P, Chen Z, Luo J, Wang H, Yan Y, Chen L, Gao W (2014) Multiplex real-time PCR assay for detection of pathogenic Vibrio parahaemolyticus strains. Mol Cell Probe 28:246–250

    Article  CAS  Google Scholar 

  • Honda T, Iida T (1993) The pathogenicity of Vibrio parahaemolyticus and the role of thermostable direct haemolysin and related haemolysins. Rev Med Microbiol 4:106–113

    Article  Google Scholar 

  • Honda S, Goto I, Minematsu I, Ikeda I, Asano N, Ishibashi M, Kinoshita Y, Nishibuchi M, Honda T, Miwatani T (1987a) Vibrio parahaemolyticus infectious disease caused by Kanagawa phenomenon-negative O3:K6 originated from Maldives. Jpn J Infect Dis 61:1070–1078

    CAS  Google Scholar 

  • Honda S, Goto I, Minematsu I, Ikeda I, Asano N, Ishibashi M, Kinoshita Y, Nishibuchi M, Honda T, Miwatani T (1987b) Gastroenteritis due to Kanagawa negative Vibrio parahaemolyticus. Lancet 29:331–332

    Article  Google Scholar 

  • Jones JL, Ludeke CM, Bowers JC, Garrett N, Fischer M, Parsons MB, Bopp CA, DePaola A (2012) Biochemical, serological, and virulence characterization of clinical and oyster Vibrio parahaemolyticus isolates. J Clin Microbiol 51:2343–2352

    Article  Google Scholar 

  • Kim JY, Lee JL (2014) Multipurpose assessment for the quantification of Vibrio spp. and total bacteria in fish and seawater using multiplex real-time polymerase chain reaction. J Sci Food Agric 94:2807–2817

    Article  CAS  Google Scholar 

  • Kim YB, Okuda J, Matsumoto C, Takahashi N, Hashimoto S, Nishibuchi M (1999) Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol 37:1173–1177

    CAS  Google Scholar 

  • Koh EG, Huyn JH, LaRock PA (1994) Pertinence of indicator organisms and sampling variables to Vibrio concentrations. Appl Environ Microbiol 60:3897–3900

    CAS  Google Scholar 

  • Lee SKY, Wang HZ, Law SHW, Wu RSS, Kong RYC (2002) Analysis of the 16S–23S rDNA intergenic spacers (IGSs) of marine vibrios for species-specific signature DNA sequences. Mar Pollut Bull 44:412–420

    Article  CAS  Google Scholar 

  • Leiva GE, Castilla JC (2002) A review of the world marine gastropod fishery: evolution of catches, management and the Chilean experience. Rev Fish Biol Fish 11:283–300

    Article  Google Scholar 

  • Lin ZK, Kumagai K, Baba J, Mekalanos J, Nishibuchi M (1993) Identification of Vibrio parahaemolyticus strains at the species level by PCR targeted to the toxR gene. J Clin Microbiol 37:1173–1177

    Google Scholar 

  • Lin YT, Labbe RG, Shetty K (2005) Inhibition of Vibrio parahaemolyticus in seafood systems using oregano and cranberry phytochemical synergies and lactic acid. Innov Food Sci Emerg 6:453–458

    Article  CAS  Google Scholar 

  • Liu B, He X, Chen W, Yu S, Shi C, Zhou X, Chen J, Wang D, Shi X (2012) Development of a real time PCR assay for rapid detection of Vibrio parahaemolyticus from seafood. Protein Cell 3:204–212. https://doi.org/10.1007/s13238-012-2017-6

    Article  CAS  Google Scholar 

  • Messelhäusser U, Colditz J, Thärigen D, Kleih W, Höller C, Busch U (2010) Detection and differentiation of Vibrio spp. in seafood and fish samples with cultural and molecular methods. Int J Food Microbiol 142:360–364

    Article  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J et al (2000) Effect of aquaculture on world fish supplies. Nature 405:1017–1024

    Article  CAS  Google Scholar 

  • Nishibuchi M, Kaper JB (1995) Thermostable direct haemolysin gene of Vibrio parahaemolyticus: a virulence gene acquired by a marine bacterium. Infect Immun 63:2093–2099

    CAS  Google Scholar 

  • Nordstrom JL, Vickery MCL, Blackstone GM, Murray SL, DePaola A (2007) Development of a multiplex real-time PCR assay with an internal amplification control for the detection of total and pathogenic Vibrio parahaemolyticus bacteria in oysters. Appl Environ Microbiol 73:5840–5847

    Article  CAS  Google Scholar 

  • NSSP: National Shellfish Sanitation Program (1997) Sanitation of the harvesting, processing and distribution of shellfish. In: Manual of Operations Part II, U.S. Department of Health and Human Services, Food and Drug Administration, Washington, DC

  • O’Hara CM, Sowers EG, Bopp CA, Duda SB, Strockbine NA (2003) Accuracy of six commercially available systems for identification of members of the family Vibrionaceae. J Clin Microbiol 41:5654–5659

    Article  Google Scholar 

  • Oliver JD, Nilsson L, Kjelleberg S (1991) Formation of nonculturable vulnificus cells and its relationship to the starvation state. Appl Environ Microbiol 57:2640–2644

    CAS  Google Scholar 

  • Park JY, Jeon S, Kim JY, Park M, Kim S (2013) Multiplex real-time polymerase chain reaction assays for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus. Osong Public Health Res Perspect 4:133–139

    Article  Google Scholar 

  • Raghunath P, Acharya S, Bhanumathi A, Karunasagar I (2008) Detection and molecular characterization of Vibrio parahaemolyticus isolated from seafood harvested along the southwest coast of India. Food Microbiol 25:824–830

    Article  CAS  Google Scholar 

  • Rizvi AV, Bej AK (2010) Multiplexed real-time PCR amplification of tlh, tdh and trh genes in Vibrio parahaemolyticus and its rapid detection in shellfish and Gulf of Mexico water. Antonie Van Leeuwenhoek 98:279–290. https://doi.org/10.1007/s10482

    Article  Google Scholar 

  • Robert-Pillot A, Guenole A, Lesne J, Delesmont R, Fournier JM, Quilici ML (2004) Occurrence of the tdh and trh genes in Vibrio parahaemolyticus isolates from waters and raw shellfish collected in two French coastal areas and from seafood imported into France. Int J Food Microbiol 91:319–325

    Article  CAS  Google Scholar 

  • Rosec JP, Causse V, Cruz B, Rauzier J, Carnat L (2012) The international standard ISO/TS 21872-1 to study the occurence of total and pathogenic Vibrio parahaemolyticus and Vibrio cholerae in seafood: its improvement by use of a chromogenic medium and PCR. Int J Food Microbiol 157:189–194

    Article  CAS  Google Scholar 

  • Shen XS, Cai YQ, Liu CC, Liu WW, Hui YH, Su YC (2009) Effect of temperature on uptake and survival of Vibrio parahaemolyticus in oysters (Crassostrea plicatula). Int J Food Microbiol 136:129–132

    Article  CAS  Google Scholar 

  • Suffredini E, Cozzi L, Ciccaglioni G, Croci L (2014) Development of a colony hybridization method for the enumeration of total and potentially enteropathogenic Vibrio parahaemolyticus in shellfish. Int J Food Microbiol 186:22–31

    Article  Google Scholar 

  • Tall A, Teillon A, Boisset C, Delesmont R, Touron-Bodilis A, Hervio-Heath D (2012) Real-time PCR optimization to identify environmental Vibrio spp. strains. J Appl Microbiol 113:361–372

    Article  CAS  Google Scholar 

  • Venkateswaran K, Dohmoto N, Harayama S (1998) Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl Environ Microbiol 64:681–687

    CAS  Google Scholar 

  • Wong HC, Wang P, Chen SY, Chiu SW (2004) Resuscitation of viable but non-culturable Vibrio parahaemolyticus in a minimum salt medium. FEMS Microbiol Lett 233:269–275

    Article  CAS  Google Scholar 

  • Zhang XH, Austin B (2005) Haemolysins in Vibrio species. J Appl Microbiol 98:1011–1019

    Article  CAS  Google Scholar 

  • Zhu RG, Li TP, Jia YF, Song LF (2012) Quantitative study of viable Vibrio parahaemolyticus cells in raw seafood using propidium monoazide in combination with quantitative PCR. J Microbiol Meth 90:262–266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank MARE. A s.r.l. (Cattolica, FC, Italy) to have provided the clam samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Gianotti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 237 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Federici, S., Serrazanetti, D.I., Guerzoni, M.E. et al. Development of a rapid PCR protocol to detect Vibrio parahaemolyticus in clams. J Food Sci Technol 55, 749–759 (2018). https://doi.org/10.1007/s13197-017-2986-9

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2986-9

Keywords

Navigation