Skip to main content
Log in

Ozone as degradation agent of pesticide residues in stored rice grains

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

This work aimed to study the kinetics of bifenthrin and deltamethrin residues degradation in rice grains under exposure to ozone and evaluate the effect of ozonization on rice grains marketing standards. The grains sprayed with pesticides were exposed to ozone at a concentration of 3 mg L−1 and continuous flow of 1.0 L min−1 for defined periods of up to 10 h. Residues of pesticides were extracted from grains using solid liquid extraction method with low-temperature partition analyzed by gas chromatography with electron capture detection (SLE/LTP-GC/ECD). Data from residual concentrations of bifenthrin and deltamethrin, due to the ozone exposure period, were adjusted to kinetic models of zero order, first order and second order. It was observed that ozone was effective in the degradation bifenthrin and deltamethrin residues, removing 91.9% of bifenthrin and 92.7% of deltamethrin. The kinetic model that best fitted deltamethrin and bifenthrin residues degradation data by ozone, was the one of first order. The marketing standards evaluated were the water content and yield. It was observed the ozone did not alter the rice grains water content and yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acero JL, Stemmler K, von Gunten U (2000) Degradation kinetics of atrazine and its degradation products with ozone and oh radicals: a predictive tool for drinking water treatment. Environ Sci Technol 34:591–597

    Article  CAS  Google Scholar 

  • Alencar ER, Faroni LRA, Soares NDFF, Silva WA, Carvalho MCS (2012) Efficacy of ozone as a fungicidal and detoxifying agent of aflatoxins in peanuts. J Sci Food Agric 92:899–905

    Article  Google Scholar 

  • Ávila MBR, Faroni LRA, Heleno FF, Queiroz MELR, Almeida RI (2017) Chemometrically assisted optimization of SLE/LTP procedures for determination of dissipation and translocation of pesticide residues in rice grains. J Food Sci Technol (in press)

  • Brasil. Ministério da Agricultura, Pecuária e Abastecimento (2009) Regras para análises de sementes. First edit. Brasília: MAPA/ACS

  • Chelme-Ayala P, El-Din MG, Smith DW (2010) Kinetics and mechanism of the degradation of two pesticides in aqueous solutions by ozonation. Chemosphere 78:557–562

    Article  CAS  Google Scholar 

  • Chiron S, Rodriguez A, Fernandez-Alba A (1998) Application of gas and liquid chromatography-mass spectrometry to the evaluation of pirimiphos methyl degradation products in industrial water under ozone treatment. J Chromatogr A 823:97–107

    Article  CAS  Google Scholar 

  • Chiron S, Fernandez-Alba A, Rodriguez A, Garcia-Calvo E (2000) Pesticide chemical oxidation: state-of-the-art. Water Res 34:366–377

    Article  CAS  Google Scholar 

  • Dórea HS, Sobrinho L (2004) Analysis of pesticide residues in rice using matrix solid-phase dispersion (MSPD). J Brazil Chem Soc 15:690–694

    Article  Google Scholar 

  • FAO (2014) FAO rice market monitor April 2014–Volume XVII–Issue No. 1, XV

  • Freitas RS, Queiroz MELR, Faroni LRA, Heleno FF, Moura VV (2014) Desenvolvimento do método de extração sólido-líquido com partição em baixa temperatura para determinação de inseticidas em grãos de milho ozonizados. Quim Nova 37:238–243

    Article  Google Scholar 

  • Gu X, Zhang G, Chen L, Dai R, Yu Y (2008) Persistence and dissipation of synthetic pyrethroid pesticides in red soils from the Yangtze River Delta area. Environ Geochem Health 30:67–77

    Article  CAS  Google Scholar 

  • Heleno FF, Queiroz MELR, Neves AA, Freitas RS, Faroni LRA, Oliveira AF (2014) Effects of ozone fumigation treatment on the removal of residual difenoconazole from strawberries and on their quality. J Environ Sci Health B 49:94–101

    Article  CAS  Google Scholar 

  • Heleno FF, Queiroz MELR, Neves AA, Faroni LRA, Sousa FA, Oliveira AF (2015) Ozone treatment for the removal of residual chlorothalonil and effects on the quality of table grapes. J Braz Chem Soc 26:687–694

    CAS  Google Scholar 

  • Hirata R (1995) Piretróides: estrutura química-atividade biológica. Quim Nova 18:368–374

    CAS  Google Scholar 

  • Hou X, Han M, Dai X, Yang X, Yi S (2013) A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography-tandem mass spectrometry. Food Chem 138:1198–1205

    Article  CAS  Google Scholar 

  • Hwang ES, Cash JN, Zabik MJ (2001) Postharvest treatments for the reduction of mancozeb in fresh apples. J Agric Food Chem 49:3127–3132

    Article  CAS  Google Scholar 

  • Ikeura H, Kobayashi F, Tamaki M (2011) Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. J Food Eng 103:345–349

    Article  CAS  Google Scholar 

  • Ikeura H, Hamasaki S, Tamaki M (2013) Effects of ozone microbubble treatment on removal of residual pesticides and quality of persimmon leaves. Food Chem 138:366–371

    Article  CAS  Google Scholar 

  • Inan F, Pala M, Doymaz I (2007) Use of ozone in detoxification of aflatoxin B1 in red pepper. J Stored Prod Res 43:425–429

    Article  CAS  Google Scholar 

  • Kaushik G, Satya S, Naik SN (2009) Food processing a tool to pesticide residue dissipation—a review. Food Res Int 42:26–40

    Article  CAS  Google Scholar 

  • Manley TC, Niegowski SJ (1967) Ozone. Encyclopedia of Chemical Technology, New York

    Google Scholar 

  • Ong KC, Cash JN, Zabik MJ, Siddiq M, Jones AL (1996) Chlorine and ozone washes for pesticide removal from apples and processed apple sauce. Food Chem 55:153–160

    Article  CAS  Google Scholar 

  • Pandher S, Sahoo SK, Battu RS, Singh B et al (2012) Persistence and dissipation kinetics of deltamethrin on chili in different agro-climatic zones of India. Bull Environ Contam Toxical 88:764–768

    Article  CAS  Google Scholar 

  • Pereira AM, Faroni LRA, Sousa AH, Urruchi WI, Roma RCC (2007) Efeito imediato e latente da fumigação com ozônio na qualidade dos grãos de milho. Rev Bras Arm 32:100–110

    Google Scholar 

  • Pimpão CT, Zampronio AR, Assis HCA (2007) Effects of deltamethrin on hematological parameters and enzymatic activity in Ancistrus multispinis (Pisces, Teleostei). Pestic Biochem Phys 88:122–127

    Article  Google Scholar 

  • Prestes OD, Friggi CA, Adaime MB, Zanella R (2009) QuEChERS–um método moderno de preparo de amostra para determinação multirresíduo de pesticidas em alimentos por métodos cromatográficos acoplados à espectrometria de massas. Quim Nova 32:620–1634

    Article  Google Scholar 

  • Santos MAT, Areas MA, Reyes FGR (2007) Piretróides–uma visão geral. Alim Nutri 18:339–349

    Google Scholar 

  • Segal-Rosenheimer M, Dubowski Y (2007) Heterogeneous ozonolysis of cypermethrin using real-time monitoring FTIR techniques. J Phys Chem C 111:11682–11691

    Article  CAS  Google Scholar 

  • Selma MV, Allende A, López-Gálvez F, Conesa M, Gil MI (2008) Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry. Food Microbiol 25:809–814

    Article  CAS  Google Scholar 

  • Sharma J, Satya S, Kumar V, Tewary DK (2005) Dissipation of pesticides during bread-making. Chem Health Saf 12:17–22

    Article  CAS  Google Scholar 

  • Silva S, Luvielmo M, Geyer M, Pra I (2011) Potencialidades do uso do ozônio no processamento de alimentos. Semin Cien Agrar 32:659–682

    Article  Google Scholar 

  • Tiwari BK, Brennan CS, Curran T, Gallagher E, Cullen PJ, O’Donnell CP (2010) Application of ozone in grain processing. J Cereal Sci 51:248–255

    Article  CAS  Google Scholar 

  • Uddin R, Iqbal S, Khan MF, Parveen Z, Ahmed M, Abbas M (2011) Determination of pesticide residues in rice grain by solvent extraction, column cleanup, and gas chromatography-electron capture detection. Bull Environ Contam Toxical 86:83–89

    Article  CAS  Google Scholar 

  • von Gunten U (2003) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37:1443–1467

    Article  Google Scholar 

  • Wang K, Wu JX, Zhang HY (2012) Dissipation of difenoconazole in rice, paddy soil, and paddy water under field conditions. Ecotox Environ Safe 86:111–115

    Article  CAS  Google Scholar 

  • Wu J, Luan T, Lan C, Wai T, Lo H, Yuk G, Chan S (2007) Removal of residual pesticides on vegetable using ozonated water. Food Control 18:466–472

    Article  CAS  Google Scholar 

  • Yu C, Li Y, Zhang Q, Zou N, Gu K, Li X, Pan C (2014) Decrease of pirimiphos-methyl and deltamethrin residues in stored rice with post-harvest treatment. Int J Environ Res Public Health 11:5372–5381

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Brazilian Agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lêda Rita A. Faroni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Ávila, M.B.R., Faroni, L.R.A., Heleno, F.F. et al. Ozone as degradation agent of pesticide residues in stored rice grains. J Food Sci Technol 54, 4092–4099 (2017). https://doi.org/10.1007/s13197-017-2884-1

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2884-1

Keywords

Navigation