Skip to main content
Log in

Contamination sources, serogroups, biofilm-forming ability and biocide resistance of Listeria monocytogenes persistent in tilapia-processing facilities

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The major contamination sources, serogroups, biofilm-forming ability and biocide resistance of Listeria monocytogenes persistent in tilapia-processing facilities were assessed. Twenty-five processing-control points were examined twice in two factories, including whole tilapias, frozen fillets, water and food-contact surfaces. L. monocytogenes were detected in 4 and 20% of points of Factory A and B respectively, but at low concentrations. Contamination was due to inadequate handling of tilapias in the slaughter room of Factory A and to the application of ineffective sanitizing procedures in Factory B. Seven strains were characterized by RAPD-PCR using primers HLWL85, OPM-01 and DAF4. Genotypic similarity allowed tracing the contamination source of tilapia fillets in Factory B and detecting a prevalent strain in Brazilian tilapia-processing facilities. The serogroup II (including the serotype 1/2c) was the most frequently found, followed by serogroup I (1/2a) and III (1/2b), whereas the serotype 4b was not detected. All strains showed high biofilm-forming ability on stainless steel and polystyrene, but biofilm formation was positively correlated with the type of origin surface. Biofilms were highly resistant to peracetic acid and sodium hypochlorite, being required doses higher than those recommended by manufacturers to be eradicated. Peracetic acid was more effective than sodium hypochlorite, but the use of disinfectants with similar mechanisms of action increases the risk of cross-resistance. Case-by-case approaches are thus recommended to determine the sources and degree of contamination present in each factory, which would allow applying precise responses to control the persistence of bacterial pathogens such as L. monocytogenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdollahzadeh E, Ojagh SM, Hosseini H, Irajian G, Ghaemi EA (2016) Prevalence and molecular characterization of Listeria spp. and Listeria monocytogenes isolated from fish, shrimp, and cooked ready-to-eat (RTE) aquatic products in Iran. LWT Food Sci Technol 73:205–211. doi:10.1016/j.lwt.2016.06.020

    Article  CAS  Google Scholar 

  • Abee T, Wouters JA (1999) Microbial stress response in minimal processing. Int J Food Microbiol 50(1–2):65–91. doi:10.1016/S0168-1605(99)00078-1

    Article  CAS  Google Scholar 

  • APHA (2013) Compendium of methods for the microbiological examination of foods. American Public Health Association (APHA), Washington DC

    Google Scholar 

  • Baert L, Vandekinderen I, Devlieghere F, Coillie E, Debevere J, Uyttendaele M (2009) Efficacy of sodium hypochlorite and peroxyacetic acid to reduce murine norovirus 1, B40-8, Listeria monocytogenes, and Escherichia coli O157:H7 on shredded iceberg lettuce and in residual wash water. J Food Prot 72(5):1047–1054

    Article  CAS  Google Scholar 

  • Bartolomeu DAFS, Dallabona BR, Macedo REF, Kirschnik PG (2011) Contaminação microbiológica durante as etapas de processamento de filé de tilápia (Oreochromis niloticus). Arch Vet Sci 16(1):21–30. doi:10.5380/avs.v16i1.22788

    Article  Google Scholar 

  • Beltrame CA, Martelo EB, Mesquita RA, Barbosa J, Steffens C, Toniazzo G, Valduga E, Cansian RL (2015) Adhesion of Listeria monocytogenes to cutting board surfaces and removal by different sanitizers. J Verbrauch Lebensm 10(1):41–47. doi:10.1007/s00003-014-0923-7

    Article  CAS  Google Scholar 

  • Blackman IC, Frank JF, Frank F (1996) Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J Food Prot 8(8):827–831. doi:10.4315/0362-028X-59.8.827

    Article  Google Scholar 

  • Boari CA, Pereira GI, Valeriano C, Silva BC, Morais VM, Figuieredo HCP, Piccoli RH (2008) Bacterial ecology of tilapia fresh fillets and some factors that can influence their microbial quality. Ciên Tecnol Aliment (Campinas) 28(4):863–867. doi:10.1590/S0101-20612008000400015

    Article  Google Scholar 

  • Brazil (2001) Regulamento técnico sobre os padrões microbiológicos para alimentos. Resolução No 12, de 2 de janeiro de 2001. Diário Oficial da República Federativa do Brasil, Brasília

  • Carbonera N, Cappelletti BM, Espírito-Santo MLP (2011) ISO 22000/HACCP associated with the presence of microorganisms in the processing of tilapia (Oreochromis niloticus) fillets. Qual Assur J 14:50–60. doi:10.1002/qaj.489

    Google Scholar 

  • Carpentier B, Cerf O (2011) Review—Persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145(1):1–8. doi:10.1016/j.ijfoodmicro.2011.01.005

    Article  Google Scholar 

  • Cartwright EJ, Jackson KA, Johnson SD, Graves LM, Silk BJ, Mahon BE (2013) Listeriosis outbreaks and associated food vehicles, United States, 1998–2008. Emerg Infect Dis 19(1):1–9. doi:10.3201/eid1901.120393

    Article  Google Scholar 

  • Chae MS, Schraft H, Truelstrup Hansen L, Mackereth R (2006) Effects of physicochemical surface characteristics of Listeria monocytogenes strains on attachment to glass. Food Microbiol 23(3):250–259. doi:10.1016/j.fm.2005.04.004

    Article  CAS  Google Scholar 

  • Chapman JS (2003) Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int Biodeterior Biodegrad 51(4):271–276. doi:10.1016/S0964-8305(03)00044-1

    Article  CAS  Google Scholar 

  • Chen B-Y, Wang C-Y, Wang C-L, Fan Y-C, Weng I-T, Chou C-H (2016) Prevalence and persistence of Listeria monocytogenes in ready-to-eat tilapia sashimi processing plants. J Food Prot 79(11):1898–1903. doi:10.4315/0362-028X.JFP-16-149

    Article  Google Scholar 

  • Cruz CD, Silvestre FA, Kinoshita EM, Landgraf M, Franco BDGM, Destro MT (2008) Epidemiological survey of Listeria monocytogenes in a Gravlax salmon processing line. Braz J Microbiol 39:375–383

    Article  CAS  Google Scholar 

  • De-Beer D, Srinivasan R, Stewart PS (1994) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60(12):4339–4344

    CAS  Google Scholar 

  • Doumith D, Buchrieser C, Glaser P, Jacquet C, Martin P (2004) Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42(8):3819–3822. doi:10.1128/JCM.42.8.3819-3822.2004

    Article  CAS  Google Scholar 

  • EFSA (2016) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J 14(12):4634. doi:10.2903/j.efsa.2016.4634

    Google Scholar 

  • FAO (2016) FAO yearbook. Fishery and aquaculture statistics 2014. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ (2014) Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot 77(1):150–170. doi:10.4315/0362-028X.JFP-13-150

    Article  CAS  Google Scholar 

  • Gaulin C, Lê M, Shum M, Fong D (2011) Disinfectants and sanitizers for use on food contact surfaces. National Collaborative Centre for Environment Health. http://www.ncceh.ca/sites/default/files/Food_Contact_Surface_Sanitizers_Aug_2011.pdf. Accessed 18 Feb 2017

  • Hansen CH, Vogel BF, Gram L (2006) Prevalence and survival of Listeria monocytogenes in Danish aquatic and fish-processing environments. J Food Prot 69(9):2113–2122. doi:10.4315/0362-028X-69.9.2113

    Article  Google Scholar 

  • Havelaar AH, Brul S, Jong A, Jonge R, Zwietering MH, Kuile BHT (2010) Future challenges to microbial food safety. Int J Food Microbiol 139:79–94. doi:10.1016/j.ijfoodmicro.2009.10.015

    Article  Google Scholar 

  • IBGE (2015) Produção da Pecuária Municipal. Ministério do Planejamento, Desenvolvimento e Gestão, Rio de Janeiro

  • Jamali H, Paydar M, Ismail S, Looi CY, Wong WF, Radmehr B, Abedini A (2015) Prevalence, antimicrobial susceptibility and virulotyping of Listeria species and Listeria monocytogenes isolated from open-air fish markets. BMC Microbiol 15:144. doi:10.1186/s12866-015-0476-7

    Article  Google Scholar 

  • Jami M, Ghanbari M, Zunabovic M, Domig KJ, Kneifel W (2014) Listeria monocytogenes in aquatic food products—a review. Compr Rev Food Sci Food Saf 13:798–813. doi:10.1111/1541-4337.12092

    Article  Google Scholar 

  • Junior PG, Assunção AWA, Baldin JC, Amaral LA (2014) Microbiological quality of whole and filleted shelf-tilapia. Aquaculture 433:196–200. doi:10.1016/j.aquaculture.2014.06.015

    Article  Google Scholar 

  • Kitis M (2004) Disinfection of wastewater with peracetic acid: a review. Environ Int 30(1):47–55. doi:10.1016/S0160-4120(03)00147-8

    Article  CAS  Google Scholar 

  • Kramarenko T, Roasto M, Meremäe K, Kuningas M, Põltsama P, Elias T (2013) Listeria monocytogenes prevalence and serotype diversity in various foods. Food Control 30:24–29. doi:10.1016/j.foodcont.2012.06.047

    Article  CAS  Google Scholar 

  • Langsrud S, Sidhu MS, Heir E, Holck AL (2003) Bacterial disinfectant resistance: a challenge for the food industry. Int Biodeterior Biodegrad 51:283–290. doi:10.1016/S0964-8305(03)00039-8

    Article  CAS  Google Scholar 

  • Lawrence LM, Harvey J, Gilmour A (1993) Development of a random amplification of polymorphic DNA typing method for Listeria monocytogenes. Appl Environ Microbiol 59:3117–3119

    CAS  Google Scholar 

  • Mann CM, Markham JL (1998) A new method for determining the minimum inhibitory concentration of essential oils. J Appl Microbiol 84(4):538–544

    Article  CAS  Google Scholar 

  • Russell AD (2003) Similarities and differences in the responses of microorganisms to biocides. J Antimicrob Chemother 52(5):750–763. doi:10.1093/jac/dkg422

    Article  CAS  Google Scholar 

  • Saá-Ibusquiza P, Herrera JJR, Vázquez-Sánchez D, Cabo ML (2012) Adherence kinetics, resistance to benzalkonium chloride and microscopic analysis of mixed biofilms formed by Listeria monocytogenes and Pseudomonas putida. Food Control 25(1):202–210. doi:10.1016/j.foodcont.2011.10.002

    Article  Google Scholar 

  • Shimojima Y, Ida M, Nakama A, Nishino Y, Fukui R, Kuroda S, Hirai A, Kai A, Sadamasu K (2016) Prevalence and contamination levels of Listeria monocytogenes in ready-to-eat foods in Tokyo, Japan. J Vet Med Sci 78(7):1183–1187. doi:10.1292/jvms.15-0708

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. Freeman, San Francisco

    Google Scholar 

  • Stanga M (2010) Sanitation: cleaning and disinfection in the food industry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi:10.1002/9783527629459

    Book  Google Scholar 

  • Struelens MJ, Bauernfeind A, Van-Belkum A, Blanc D, Cookson BD, Dijkshoorn L, El-Solh N, Etienne J, Garaizar J, Gerner-Smidh P, Legakis N, de-Lencastre H, Nicolas MH, Pitt TL, Römling U, Witte W, Legakis N (1996) Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect 2:2–11. doi:10.1111/j.1469-0691.1996.tb00193.x

    Article  Google Scholar 

  • Välimaa A-L, Tilsala-Timisjärvi A, Virtanen E (2015) Rapid detection and identification methods for Listeria monocytogenes in the food chain—a review. Food Control 55:103–114. doi:10.1016/j.foodcont.2015.02.037

    Article  Google Scholar 

  • Vallim DC, Hofer CB, Lisbôa RDC, Barbosa AV, Rusak LA, Reis CMF, Hofer E (2015) Twenty years of Listeria in Brazil: occurrence of Listeria species and Listeria monocytogenes serovars in food samples in Brazil between 1990 and 2012. Biomed Res Int 2015:540204. doi:10.1155/2015/540204

    Article  Google Scholar 

  • Verran J, Packer A, Kelly P, Whitehead KA (2010) The retention of bacteria on hygienic surfaces presenting scratches of microbial dimensions. Lett Appl Microbiol 50(3):258–263

    Article  CAS  Google Scholar 

  • Vogel BF, Jørgensen LV, Ojeniyi B, Huss HH, Gram L (2001) Diversity of Listeria monocytogenes isolates from cold-smoked salmon produced in different smokehouses as assessed by Random Amplified Polymorphic DNA analyses. Int J Food Microbiol 65:83–92

    Article  CAS  Google Scholar 

  • Walter EHM, Nascimento MS, Kuaye AY (2009) Efficacy of sodium hypochlorite and peracetic acid in sanitizing green coconuts. Lett Appl Microbiol 49(3):366–371. doi:10.1111/j.1472-765X.2009.02670.x

    Article  CAS  Google Scholar 

  • Wernars K, Boerlin P, Audurier A, Russell EG, Curtis GDW, Herman L, Mee-Marquet N (1996) The WHO multicenter study on Listeria monocytogenes subtyping: random amplification of polymorphic DNA (RAPD). Int J Food Microbiol 32:325–341. doi:10.1016/S0168-1605(96)01146-4

    Article  CAS  Google Scholar 

  • Wiedmann-al-Ahmad M, Tichy HV, Schön G (1994) Characterization of Acinetobacter type strains and isolates obtained from wastewater treatment plants by PCR fingerprinting. Appl Environ Microbiol 60:4066–4071

    CAS  Google Scholar 

  • Wu S, Wu Q, Zhang J, Chen M, Yan Z, Hu H (2015) Listeria monocytogenes prevalence and characteristics in retail raw foods in China. PLoS ONE 10(8):e0136682. doi:10.1371/journal.pone.0136682

    Article  Google Scholar 

  • Wulff G, Gram L, Ahrens P, Vogel BF (2006) One group of genetically similar Listeria monocytogenes strains frequently dominates and persists in several fish slaughter- and smokehouses. Appl Environ Microbiol 72(6):4313–4322. doi:10.1128/AEM.02288-05

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the São Paulo Research Foundation (FAPESP 2014/20590-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vázquez-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vázquez-Sánchez, D., Galvão, J.A. & Oetterer, M. Contamination sources, serogroups, biofilm-forming ability and biocide resistance of Listeria monocytogenes persistent in tilapia-processing facilities. J Food Sci Technol 54, 3867–3879 (2017). https://doi.org/10.1007/s13197-017-2843-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-017-2843-x

Keywords

Navigation