Skip to main content
Log in

Modeling the social organization of science

Chasing complexity through simulations

  • Original paper in Philosophy of Social Sciences
  • Published:
European Journal for Philosophy of Science Aims and scope Submit manuscript

Abstract

At least since Kuhn’s Structure, philosophers have studied the influence of social factors in science’s pursuit of truth and knowledge. More recently, formal models and computer simulations have allowed philosophers of science and social epistemologists to dig deeper into the detailed dynamics of scientific research and experimentation, and to develop very seemingly realistic models of the social organization of science. These models purport to be predictive of the optimal allocations of factors, such as diversity of methods used in science, size of groups, and communication channels among researchers. In this paper we argue that the current research faces an empirical challenge. The challenge is to connect simulation models with data. We present possible scenarios about how the challenge may unfold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, J.M., Himmelreich, J., & Thomson, C. (2015). Epistemic landscapes, optimal search, and the division of cognitive labor. Philosophy of Science, 82(3), 424–453.

    Article  Google Scholar 

  • Axtell, R.L., Epstein, J.M., Dean, J.S., Gumerman, G.J., Swedlund, A.C., Harburger, J., Chakravarty, S., Hammond, R., Parker, J., & Parker, M. (2002). Population growth and collapse in a multiagent model of the kayenta anasazi in long house valley. Proceedings of the National Academy of Sciences, 99(3), 7275–7279.

    Article  Google Scholar 

  • Bala, V., & Goyal, S. (1998). Learning from neighbours. Review of Economic Studies, 65, 595–621.

    Article  Google Scholar 

  • Bearman, P., Moody, J., & Stovel, K. (2004). Chains of affection: the structure of adolescent romantic and sexual networks. American Journal of Sociology, 110, 44–91.

    Article  Google Scholar 

  • Betz, G (2011). Prediction. In Jarvie, I., & Zamora-Bonilla, J. (Eds.) Handbook of philosophy of social science (pp. 645–664). London: Sage.

  • Börner, K, Boyack, K W, Milojevic, S, & Morris, S (2012). An introduction to modeling science: basic model types, key definitions, and a general framework for the comparison of process models. In Scharnhorst, A., Börner, K., & van den Besselaar, P. (Eds.) Models of science dynamics, encounters between complexity theory and information sciences (pp. 3–22). Berlin: Springer.

  • Brock, W.A., & Durlauf, S.N. (1999). A formal model of theory choice in science. Economic Theory, 14, 113–30.

    Article  Google Scholar 

  • Cartwright, N., Shomar, T., & Suárez, M. (1995). The tool box of science: tools for the building of models with a superconductivity example. Poznan Studies in the Philosophy of the Sciences and the Humanities, 44, 137–149.

    Google Scholar 

  • De Langhe, R. (2014). A unified model of the division of cognitive labor. Philosophy of Science, 81(3), 444–459.

    Article  Google Scholar 

  • De Langhe, R., & Greiff, M. (2009). Standards and the distribution of cognitive labor. The Logic Journal of the IGPL, 18, 278–293.

    Article  Google Scholar 

  • Edmonds, B., Gilbert, N., Ahrweiler, P., & Scharnhorst, A. (2011). Simulating the social processes of science. Journal of Artificial Societies and Social Simulation, 14(4), 14.

    Article  Google Scholar 

  • Epstein, B. (2011). Agent-based modeling and the fallacies of individualism. In Humphreys, P., & Imbert, C. (Eds.) Models, simulations, and representations (pp. 115–144). New York: Routledge.

  • Epstein, J.M. (1999). Agent-based computational models and generative social science. Complexity, 4(5), 41–60.

    Article  Google Scholar 

  • Eubank, S., Guclu, H., Anil Kumar, V.S., Marathe, M.V., Srinivasan, A., Toroczkai, Z., & Wang, N. (2004). Modelling disease outbreaks in realistic urban social networks. Nature, 429, 180–184.

    Article  Google Scholar 

  • Franses, P.H. (2002). A concise introduction to econometrics: an intuitive guide. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Friedman, M. (1953). Essays in positive economics. Chicago: University of Chicago Press.

    Google Scholar 

  • Gell-Mann, M. (1995). What is complexity? Complexity, 1(1), 16–19.

    Article  Google Scholar 

  • Gibbard, A., & Varian, H.R. (1978). Economic models. The Journal of Philosophy, 75(11), 664–677.

    Article  Google Scholar 

  • Giere, R.N. (1988). Explaining science: a cognitive approach. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Gilbert, N. (2008). Agent-based models. London: Sage Publications Inc.

    Book  Google Scholar 

  • Gilbert, N., & Troitzsch, K.G. (2005). Simulation for the social scientist. New York: McGraw-Hill.

    Google Scholar 

  • Goldman, A.I., & Shaked, M. (1991). An economic model of scientific activity and truth acquisition. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 63(1), 31–55.

    Article  Google Scholar 

  • Grim, P., & et al. (2013). How simulations fail. Synthese, 190, 2367–2390.

    Article  Google Scholar 

  • Hobijn, B., & Franses, P.H. (2000). Asymptotically perfect and relative convergence of productivity. Journal of Applied Econometrics, 15, 59–81.

    Article  Google Scholar 

  • Hobijn, B., & Franses, P.H. (2001). Are living standards converging? Structural Change and Economic Dynamics, 12, 171–200.

    Article  Google Scholar 

  • Kennan, J., & Walker, J. (2011). The effect of expected income on individual migration decisions. Econometrica, 79(1), 211–251.

    Article  Google Scholar 

  • Kitcher, P. (1990). The division of cognitive labor. The Journal of Philosophy, 87(1), 5–22.

    Article  Google Scholar 

  • MacLeod, M., & Nersessian, N. (2013). Building simulations from the ground up, modeling and theory in systems biology. Philosophy of Science, 80(4), 533–556.

    Article  Google Scholar 

  • Mainzer, K. (2007). Thinking in complexity: the computational dynamics of matter, mind and mankind. Berlin: Springer.

    Google Scholar 

  • Mali, F, Kronegger, L, Doreian, P, & Ferligoj, A (2012). Dynamic scientific co-authorship networks Scharnhorst, A., Börner, K., & van den Besselaar, P. (Eds.), Springer.

  • Mäki, U. (1992). On the method of isolation in economics. Poznan Studies in the Philosophy of the Sciences and the Humanities, 26, 19–54.

    Google Scholar 

  • Miller, J.H., & Page, S.E. (2007). Complex adaptive systems: an introduction to computational models of social life. Princeton and Oxford: Princeton University Press.

    Google Scholar 

  • Morgan, M.S., & Morrison, M. (Eds.) (1999). Models as mediators: perspectives on natural and social science. Cambridge: Cambridge University Press.

  • Muldoon, R., & Weisberg, M. (2011). Robustness and idealization in models of cognitive labor. Synthese, 183, 161–174.

    Article  Google Scholar 

  • Oberkampf, W.L., & Roy, C.J. (2010). Verification and validation in scientific computing. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Radicchi, F., Fortunato, S., & Vespignani, A. (2012). Citation networks. In Scharnhorst, A., Börner, K., & van den Besselaar, P. (Eds.) Models of science dynamics: encounters between complexity theory and information science (pp. 233–257): Springer.

  • Reiss, J. (2012). Idealization and the aims of economics: three cheers for instrumentalism. Economics and Philosophy, 28(03), 363–383.

    Article  Google Scholar 

  • Rosenberg, A. (1993). Scientific innovation and the limits of social scientific prediction. Synthese, 97, 161–182.

    Article  Google Scholar 

  • Rosenstock, S., O’Connor, C., & Burner, J. (forthcoming). In Epistemic Networks, is Less Connectivity Really More?Philosophy of Science.

  • Rudd, P.A. (2000). An introduction to classical econometric theory. Oxford: Oxford University Press.

    Google Scholar 

  • Schelling, T. (1969). Models of segregation. American Economic Review, 59 (2), 488–493.

    Google Scholar 

  • Schelling, T. (1971). Dynamic models of segregation. Journal of Mathematical Sociology, 1(2), 143–186.

    Article  Google Scholar 

  • Sent, E.-M. (1997). An economist’s glance at goldman’s economics. Philosophy of Science, 64, 139–148.

    Article  Google Scholar 

  • Scharnhorst, A., Börner, K., & van den Besselaar, P. (Eds.) (2012). Models of science dynamics encounters between complexity theory and information sciences. Berlin: Springer.

  • Strevens, M. (2003). The role of the priority rule in science. The Journal of Philosophy, 100, 55–79.

    Article  Google Scholar 

  • Thoma, J. (2015). The epistemic division of labor revisited. Philosophy of Science, 82(3), 454–472.

    Article  Google Scholar 

  • Van den Besselaar, P., Börner, K., & Scharnhorst, A. (2012). Science policy and the challenges for modelling science. In Scharnhorst, A., Börner, K., & van den Besselaar, P. (Eds.) Models of science dynamics: encounters between complexity theory and information science (pp. 261–266): Springer.

  • Van Dijk, D., Franses, P.H., & Paap, R. (2002). A nonlinear long memory model, with an application to US unemployment. Journal of Econometrics, 110, 135–165.

    Article  Google Scholar 

  • Weisberg, M. (2013). Simulation and similarity: using models to understand the world. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Weisberg, M., & Muldoon, R. (2009). Epistemic landscapes and the division of cognitive labor. Philosophy of Science, 76(2), 225–252.

    Article  Google Scholar 

  • Winsberg, E. (2006). Models of success versus the success of models: reliability without truth. Synthese, 152, 1–19.

    Article  Google Scholar 

  • Winsberg, E. (2010). Science in the age of computer simulation. Chicago: The University of Chicago Press.

    Book  Google Scholar 

  • Wooldridge, J.M. (2009). Introductory econometrics: a modern approach. South-Western Cengage Learning: Mason (OH).

    Google Scholar 

  • Ylikoski, P. (1995). The invisible hand and science. Science Studies, 8, 32–43.

    Google Scholar 

  • Zollman, K. (2007). The communication structure of epistemic communities. Philosophy of Science, 74(5), 574–587.

    Article  Google Scholar 

  • Zollman, K. (2010). The epistemic benefit of transient diversity. Erkenntnis, 72, 17–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Martini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martini, C., Fernández Pinto, M. Modeling the social organization of science. Euro Jnl Phil Sci 7, 221–238 (2017). https://doi.org/10.1007/s13194-016-0153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13194-016-0153-1

Keywords

Navigation