Skip to main content
Log in

Stick-Breaking processes, Clumping, and Markov Chain Occupation Laws

  • Published:
Sankhya A Aims and scope Submit manuscript

Abstract

We connect the empirical or ‘occupation’ laws of certain discrete space time-inhomogeneous Markov chains, related to simulated annealing, to a novel class of ‘stick-breaking’ processes, a ‘nonexchangeable’ generalization of the Dirichlet process used in nonparametric Bayesian statistics. To make this unexpected correspondence, we examine an intermediate ‘clumped’ structure in both the time-inhomogeneous Markov chains and the stick-breaking processes, perhaps of its own interest, which records the sequence of different states visited and the scaled proportions of time spent on them. By matching the associated intermediate structures, we identify the limits of the empirical measures of the time-inhomogeneous Markov chains as types of stick-breaking processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arratia, R., Barbour, A. D. and Tavaré, S. (1999). The Poisson-Dirichlet distribution and the scale-invariant Poisson process. Combin. Probab. Comput. 8, 5, 407–416.

    Article  MATH  Google Scholar 

  • Arratia, R., Barbour, A. D. and Tavaré, S. (2003). Logarithmic combinatorial structures: a probabilistic approach, 1. European Mathematical Society, Zürich.

    Book  MATH  Google Scholar 

  • Bernau, S. J. and Smithies, F. (1963). A note on normal operators. Proc. Comb. Phil. Soc. 59, 727–729.

    Article  MATH  Google Scholar 

  • Blackwell, D. and MacQueen, J. B. (1973). Ferguson distributions via pólya urn schemes. Ann. Statist. 1, 2, 353–355.

    Article  MATH  Google Scholar 

  • Bouguet, F. and Cloez, B. (2018). Fluctuations of the empirical measure of freezing Markov chains. Elec. J. Probab. 23, 1–31.

    Article  MATH  Google Scholar 

  • Bovier, A. and Den Hollander, F. (2016). Metastability: a Potential-Theoretic Approach Grundlehren der mathematischen Wissenschaften, 351. Springer, Berlin.

    Google Scholar 

  • Broderick, T., Jordan, M. I. and Pitman, J. (2012). Beta processes, stick-breaking and power laws. Bayesian Anal. 7, 2, 439–476.

    Article  MATH  Google Scholar 

  • Catoni, O. and Cerf, R. (1997). The exit path of a Markov chain with rare transitions. ESAIM: P&S, 1, 95–144.

  • Crane, H. (2016a). Rejoinder: The ubiquitous Ewens sampling formula. Statist. Sci. 31, 1, 37–39.

    MATH  Google Scholar 

  • Crane, H. (2016b). The ubiquitous Ewens sampling formula. Statist. Sci. 31, 1, 1–19.

    MATH  Google Scholar 

  • Diaconis, P., Mayer-Wolf, E., Zeitouni, O. and Zerner, M. P. W. (2004). The Poisson-Dirichlet law is the unique invariant distribution for uniform split-merge transformations. Ann. Probab. 32, 1B, 915–938.

    Article  MATH  Google Scholar 

  • Dietz, Z. and Sethuraman, S. (2007). Occupation laws for some time-nonhomogeneous markov chains. Elec. J. Probab. 12, 661–683.

    Article  MATH  Google Scholar 

  • Dietz, Z., Sethuraman, S. and Lippitt, W. (2019). Stick-breaking processes, clumping, and Markov chain occupation laws. arXiv:1901.08135v1.

  • Engen, S. (1975). A note on the geometric series as a species frequency model. Biometrika 62, 3, 697–699.

    Article  MATH  Google Scholar 

  • Engländer, J. and Volkov, S. (2018). Turning a coin over instead of tossing it. J. Theoret. Probab. 31, 2, 1097–1118.

    Article  MATH  Google Scholar 

  • Engländer, J., Volkov, S. and Wang, Z. (2020). The coin-turning walk and its scaling limit. Elec. J. Probab. 25, 1–38.

    Article  MATH  Google Scholar 

  • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Stat., 209–230.

  • Gantert, N. (1990). Laws of large numbers for the annealing algorithm. Stoch. Proc. Appl. 35, 2, 309–313.

    Article  MATH  Google Scholar 

  • Ghosal, S. and Van der Vaart, A. (2017). Fundamentals of nonparametric Bayesian inference, 44. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Ghosh, J. and Ramamoorthi, R. (2003). Bayesian nonparametrics. Springer, New York.

    MATH  Google Scholar 

  • Gnedin, A. and Kerov, S. (2001). A characterization of GEM distributions. Combin. Probab. Comput. 10, 3, 213–217.

    Article  MATH  Google Scholar 

  • Gnedin, A. and Pitman, J. (2005a). Regenerative composition structures. Ann. Probab. 33, 2, 445–479.

    Article  MATH  Google Scholar 

  • Gnedin, A. and Pitman, J. (2005b). Regenerative partition structures. Elec. J. Combin. 11, 2, Research Paper 12.

    Article  MATH  Google Scholar 

  • Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1, 1, 126–166.

    Article  MATH  Google Scholar 

  • Herbach, U. (2019). Stochastic gene expression with a multistate promoter: breaking down exact distributions. SIAM J. Appl. Math. 79, 1007–1029.

    Article  MATH  Google Scholar 

  • Hjort, N. L., Holmes, C. and Müller, P. (2010). Bayesian nonparametrics, vol. 28. Cambridge University Press, Cambridge, Walker, S. G. (ed.)

    Book  Google Scholar 

  • Hoppe, F. M. (1987). The sampling theory of neutral alleles and an urn model in population genetics. J. Math. Biol. 25, 2, 123–159.

    Article  MATH  Google Scholar 

  • Kingman, J. F. C. (1975). Random discrete distributions. J. Royal Stat. Soc. Ser. B. Stat. Methodol., 1–22.

  • Kingman, J. F. C. (1992). Poisson processes. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Landim, C. (2019). Metastable Markov chains. Probab. Surveys 16, 143–227.

    Article  MATH  Google Scholar 

  • Last, G. (2020). An integral characterization of the Dirichlet process. J. Theoretical Probab. 33, 918–930.

    Article  MATH  Google Scholar 

  • Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modeling. Ann. Stat. 20, 3, 1222–1235.

    Article  MATH  Google Scholar 

  • Lippitt, W. and Sethuraman, S. (2020). On the use of Markov stick-breaking priors: Manuscript in preparation.

  • McCloskey, J. W. (1965). A model for the distribution of individuals by species in an environment. Ph.D. thesis, Michigan State University, Department of Statistics.

  • Miclo, L. (1996). Sur let problémes de sortie discrets inhomogénes. Ann. Appl. Probab. 6, 4, 1112–1156.

    Article  MATH  Google Scholar 

  • Müller, P., Quintana, F. A., Jara, A. and Hanson, T. (2015). Bayesian nonparametric data analysis. Springer, New York.

    Book  MATH  Google Scholar 

  • Olivieri, E. and Vares, M. E. (2005). Large deviations and metastability, 100. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Patil, G. and Taillie, C. (1977). Diversity as a concept and its implications for random communities. Bull. Int. Stat. Inst. 47, 497–515.

    MATH  Google Scholar 

  • Pederson (1989). Analysis Now, Revised printing GTM, 118. Springer, New York.

    Google Scholar 

  • Pitman, J. (1996a). Random discrete distributions invariant under size-biased permutation. Adv. Appl. Probab. 28, 2, 525–539.

    Article  MATH  Google Scholar 

  • Pitman, J. (1996b). Some developments of the Blackwell-MacQueen urn scheme. Statistics, Probability, and Game Theory: Papers in Honor of David Blackwell30, 245–267.

    Article  Google Scholar 

  • Pitman, J. and Yor, M. (1997). The two-parameter poisson-dirichlet distribution derived from a stable subordinator. Ann. Probab. 25, 855–900.

    Article  MATH  Google Scholar 

  • Pitman, J. (2006c). Combinatorial Stochastic Processes: Ecole d’eté de probabilités de Saint-Flour XXXII-2002. Springer, Berlin.

    MATH  Google Scholar 

  • Pitman, J., Yakubovich, Y. et al. (2018). Ordered and size-biased frequencies in GEM and Gibbs’ models for species sampling. Ann. Appl. Probab. 28, 3, 1793–1820.

    Article  MATH  Google Scholar 

  • Schiavo, L. D. and Lytvynov, E. W. (2017). A Mecke-type characterization of the Dirichlet-Ferguson measure. arXiv:1706.07602.

  • Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statist. Sinica, 639–650.

  • Winkler, G. (1995). Image Analysis, Random Fields, and Dynamic Monte Carlo Methods. Springer, Berlin.

    Book  MATH  Google Scholar 

Download references

Acknowledgments

We thank the referees and editors for their constructive feedback. Research was partially supported by ARO W911NF-18-1-0311, a Simons Foundation Sabbatical grant, and a Daniel Bartlett graduate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunder Sethuraman.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dietz, Z., Lippitt, W. & Sethuraman, S. Stick-Breaking processes, Clumping, and Markov Chain Occupation Laws. Sankhya A 85, 129–171 (2023). https://doi.org/10.1007/s13171-020-00236-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13171-020-00236-x

Keywords

AMS (2000) subject classification

Navigation