Skip to main content
Log in

Atmospheric temporal variations in the pre-landfall environment of typhoon Nangka (2015) observed by the Himawari-8 AHI

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The next generation Geostationary Operational Environmental Satellite-R series (GOES-R) Advanced Baseline Imager (ABI) legacy atmospheric profile (LAP) retrieval algorithm is applied to the Advanced Himawari Imager (AHI) radiance measurements from the Himawari-8 satellite. Derived products included atmospheric temperature/moisture profiles, total precipitable water (TPW), and atmospheric stability indices. Since both AHI and ABI have 9 similar infrared bands, the GOES-R ABI LAP retrieval algorithm can be applied to the AHI measurements with minimal modifications. With the capability of frequent (10-min interval) full disk observations over the East Asia and Western Pacific regions, the AHI measurements are used to investigate the atmospheric temporal variation in the pre-landfall environment for typhoon Nangka (2015). Before its landfall over Japan, heavy rainfalls from Nangka occurred over the southern region of Honshu Island. During the pre-landfall period, the trends of the AHI LAP products indicated the development of the atmospheric environment favorable for heavy rainfall. Even though, the AHI LAP products are generated only in the clear skies, the 10-minute interval AHI measurements provide detailed information on the pre-landfall environment for typhoon Nangka. This study shows the capability of the AHI radiance measurements, together with the derived products, for depicting the detailed temporal features of the pre-landfall environment of a typhoon, which may also be possible for hurricanes and storms with ABI on the GOES-R satellite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bessho, K., and Coauthors, 2016: An introduction to Himawari-8/9 -Japan’s new-generation geostationary meteorological satellites. J. Meteor. Soc. Japan, 94, 151–183, doi:10.2151/jmsj.2016-009.

    Article  Google Scholar 

  • Chen, Y., Y. Han, P. Van Delst, and F. Weng, 2010: On water vapor Jacobian in fast radiative transfer model. J. Geophys. Res., 115, D12303, doi:10.1029/2009JD013379.

    Article  Google Scholar 

  • Chen, Y., Y. Han, and F. Weng, 2012: Comparison of two transmittance algorithms in the Community Radiative Transfer Model: Application to AVHRR. J. Geophys. Res., 117, D06206, doi:10.1029/2011JD016656.

    Google Scholar 

  • Di, D., Y. Ai, J. Li, W. Shi, and N. Lu, 2016: Geostationary satellite-based 6.7 µm band best water vapor information layer analysis over the Tibetan Plateau. J. Geophys. Res., 121, 4600–4613, doi:10.1002/2016-JD024867.

    Google Scholar 

  • Houze, R. A., 1993: Cloud Dynamics. Academic Press, 573 pp.

    Google Scholar 

  • Huntrieser, H., H. H. Schiesser, W. Schmid, and A Waldvogel, 1997: Comparison of traditional and newly developed thunderstorm indices for Switzerland. Wea. Forecasting, 12, 108–124.

    Article  Google Scholar 

  • Jayakrishnan, P. R., and C. A. Babu, 2014: Assessment of convective activity using stability indices as inferred from radiosonde and MODIS data. Atmos. Climate Sci., 4, 122–130, doi:10.4236/acs.2014.41014.

    Google Scholar 

  • Jin, X., J. Li, T. J. Schmit, J. Li, M. D. Goldberg, and J. J. Gurka, 2008: Retrieving clear-sky atmospheric parameters from SEVIRI and ABI infrared radiances. J. Geophys. Res., 113, D15310, doi:10.1029/2008-JD010040.

    Article  Google Scholar 

  • Lee, Y.-K., Z. Li, J. Li, and T. J. Schmit, 2014: Evaluation of the GOES-R ABI LAP retrieval algorithm using the GOES-13 sounder. J. Atmos. Oceanic Technol., 31, 3–19, doi:10.1175/JTECH-D-13-00028.1.

    Article  Google Scholar 

  • Li, J., and Coauthors, 2010: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for legacy atmospheric moisture profile, legacy atmospheric temperature profile, total precipitable water, and derived atmospheric stability indices. NOAA NESIDIS STAR., 106 pp. [Available online at http://www.goes-r.gov/products/ATBDs/baseline/ Sounding_LAP_v2.0_no_color.pdf.]

    Google Scholar 

  • Li, J., J. Li, J. Otkin, T. J. Schmit, and C.-Y. Liu, 2011: Warning information in a preconvection environment from the geostationary advanced infrared sounding system -A simulation study using IHOP case. J. Appl. Meteor. Climatol., 50, 776–783, doi:10.1175/2010-JAMC2441.1.

    Article  Google Scholar 

  • Li, J., C.-Y. Liu, P. Zhang, and T. J. Schmit, 2012: Applications of full spatial resolution space-based advanced infrared soundings in the preconvection environment. Wea. Forecasting, 27, 515–524, doi:10. 1175/WAF-D-10-05057.1.

    Article  Google Scholar 

  • Li, Z., J. Li, W. P. Menzel, J. P. Nelson III, T. J. Schmit, E. Weisz, and S. A. Ackerman, 2009: Forecasting and nowcasting improvement in cloudy regions with high temporal GOES Sounder infrared radiance measurements. J. Geophys. Res., 114, D09216, doi:10.1029/2008JD010596.

    Google Scholar 

  • Lin, Y.-L., S. Chiao, T.-A. Wang, M. L. Kaplan, and R. P. Weglarz, 2001: Some common ingredients for heavy orographic rainfall. Wea. Forecasting, 16, 633–660.

    Article  Google Scholar 

  • Lindsey, D. T., T. J. Schmit, W. M. MacKenzie Jr., C. P. Jewett, M. M. Gunshor, and L. Grasso, 2012: 10.35 µm: An atmospheric window on the GOES-R Advanced Baseline Imager with less moisture attenuation. J. Appl. Remote Sens., 6, 063598, doi:10.1117/1JRS.6.063598.

    Article  Google Scholar 

  • Masunaga, H., 2012: A satellite study of the atmospheric forcing and response to moist convection over tropical and subtropical oceans. J. Atmos. Sci., 69, 150–167, doi:10.1175/JAS-D-11-016.1.

    Article  Google Scholar 

  • Miller, R. C., 1972: Notes on Analysis and Severe-Storm Forecasting Procedures of the Air Force Global Weather Central. Tech. Report 200(R), 190 pp.

    Google Scholar 

  • Padula, F. P., and C. Cao, 2014: Using S-NPP VIIRS as a transfer radiometer to inter-compare GOES-R ABI and Himawari-8 AHI. Extended Abstract, 94th AMS Annual meeting, Atlanta. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper-235594.html.]

    Google Scholar 

  • Schmit, T. J., M. M. Gunshor, W. P. Menzel, J. J. Gurka, J. Li, and S. Bachmeier, 2005: Introducing the next-generation advanced baseline imager (ABI) on GOES-R. Bull. Amer. Meteor. Soc., 86, 1079–1096, doi:10.1175/BAMS-86-8-1079.

    Article  Google Scholar 

  • Schmit, T. J., J. Li, J. L. Li, W. F. Feltz, J. J. Gurka, M. D. Goldberg, and K. J. Schrab, 2008: The GOES-R Advanced Baseline Imager and the continuation of current sounder products. J. Appl. Meteor. Climatol., 47, 2696–2711, doi:10.1175/2008JAMC18581.

    Article  Google Scholar 

  • Schmit, T. J., J. Li, S. A. Ackerman, and J. J. Gurka, 2009: High-spectral-and high-temporal-resolution infrared measurements from geostationary orbit. J. Atmos. Oceanic Technol., 26, 2273–2292.

    Article  Google Scholar 

  • Schmit, T. J., and Coauthors, 2013: Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOESR. J. Appl. Remote Sens., 7, 073462, doi:10.11171/1.JRS.7.073462.

    Article  Google Scholar 

  • Schmit, T. J., and Coauthors, 2015: Rapid refresh information of significant events: Preparing users for the next generation of Geostationary Operational Satellites. Bull. Amer. Meteor. Soc., 96, 561–576, doi:10. 1175/BAMS-D-13-00210.1.

    Article  Google Scholar 

  • Schmit, T. J., P. Griffith, M. M. Gunshor, J. M. Daniels, S. J. Goodman, and W. J. Lebair, 2017: A Closer Look at the ABI on the GOES-R Series. Bull. Amer. Meteor. Soc., 98, 681–698, doi:10.1175/BAMS-D-15-00230.1.

    Article  Google Scholar 

  • Seemann, S. W., J. Li, W. P. Menzel, and L. E. Gumley, 2003: Operational retrieval of atmospheric temperature, moisture, and ozone from MODIS infrared radiances. J. Appl. Meteorol., 42, 1072–1091, doi:10.1175/1520-0450(2003)042<1072:OROATM>2.0.CO;2.

    Article  Google Scholar 

  • Seemann, S. W., E. E. Borbas, R. O. Knuteson, G. R. Stephenson, and H.-L. Huang, 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47, 108–203, doi:10.1175/2007JAMC1590.1.

    Article  Google Scholar 

  • Weng, F., Y. Han, P. van Delst, Q. Liu, T. Kleespies, B. Yan, and J. Le Marshall, 2005: JCSDA community radiative transfer model (CRTM). Proc. 14th International ATOVS Study Conference, Beijing, 217–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Keun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YK., Li, J., Li, Z. et al. Atmospheric temporal variations in the pre-landfall environment of typhoon Nangka (2015) observed by the Himawari-8 AHI. Asia-Pacific J Atmos Sci 53, 431–443 (2017). https://doi.org/10.1007/s13143-017-0046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0046-z

Keywords

Navigation