Skip to main content
Log in

Development of statistical prediction models for Changma precipitation: An ensemble approach

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

An ensemble statistical forecast scheme with a one-month lead is developed to predict year-to-year variations of Changma rainfall over the Korean peninsula. Spring sea surface temperature (SST) anomalies over the North Atlantic, the North Pacific and the tropical Pacific Ocean have been proposed as useful predictors in a previous study. Through a forward-stepwise regression method, four additional springtime predictors are selected: the northern Indian Ocean (NIO) SST, the North Atlantic SST change (NAC), the snow cover anomaly over the Eurasian continent (EUSC), and the western North Pacific outgoing longwave radiation anomaly (WNP (OLR)). Using these, three new prediction models are developed. A simple arithmetic ensemble mean produces much improved forecast skills compared to the original prediction model of Lee and Seo (2013). Skill scores measured by temporal correlation and MSSS (mean square error skill score) are improved by about 9% and 17%, respectively. The GMSS (Gerrity skill score) and hit rate based on a tercile prediction validation scheme are also enhanced by about 19% and 13%, respectively. The reversed NIO, reversed WNP (OLR), and reversed NAC are all related to the enhancement of a cyclonic circulation anomaly to the south or southwest of the Korean peninsula, which induces southeasterly moisture flux into the peninsula and increasing Changma precipitation. The EUSC predictor induces an enhancement of the Okhotsk Sea high downstream and thus strengthening of Changma front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2003: The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979 -present). J. Hydrometeor., 4, 1147–1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.

    Article  Google Scholar 

  • Blockeel, H., and J. Struyf, 2002: Efficient algorithms for decision tree cross-validation. J. Mach. Learning Res., 3, 621–650, doi:10.1162/jmlr.2003.3.4-5.21.

    Google Scholar 

  • Chen, X., and T. Zhou, 2014: Relative role of tropical SST forcing in the 1990s periodicity change of the Pacific-Japan pattern interannual variability. J. Geophys. Res., 119, 13043–13066, doi:10.1002/2014JD-022064.

    Google Scholar 

  • Chu, J.-E., S. N. Hameed, and K.-J. Ha, 2012: Non-linear, intraseasonal phases of the East Asian summer monsoon: Extraction and analysis using self-organizing maps. J. Climate, 25, 6975–6988, doi:10.1175/JCLI-D-11-00512.1.

    Article  Google Scholar 

  • Ding, R. Q., K.-J. Ha, and J. P. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 1059–1071, doi:10.1007/s00382-009-0555-2.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi:10.1175/BAMS-83-11-1631.

    Article  Google Scholar 

  • Kim, J.-Y., and K.-H. Seo, 2014: The development of Ensemble Statistical Prediction Model for Changma precipitation. Korean Meteor. Soc., 24, 533–540, doi:10.14191/Atmos.2014.24.4.533 (in Korean with English abstract).

    Google Scholar 

  • Kwon, M., J.-G. Jhun, B. Wang, S.-I. An, and J.-S. Kug, 2005: Decadal change in relationship between east Asian and WNP summer monsoons. Geophys. Res. Lett., 32, L16709, doi:10.1029/2005GL023026.

    Article  Google Scholar 

  • Lee, E.-J., J.-G. Jhun, and C.-K. Park, 2005: Remote connection of the northeast Asian summer rainfall variation revealed by a newly defined monsoon index. J. Climate, 18, 4381–4393, doi:10.1175/JCLI3545.1.

    Article  Google Scholar 

  • Lee, S.-E., and K.-H. Seo, 2013: The development of a statistical forecast model for Changma. Wea. Forecasting, 28, 1304–1321, doi:10.1175/WAF-D-13-00003.1.

    Article  Google Scholar 

  • Lee, S.-S., J.-Y. Lee, K.-J. Ha, B. Wang, and J. Schemm, 2011: Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific-East Asian summer monsoon. Climate Dyn., 36, 1173–1188, doi:10.1007/s00382-010-0832-0.

    Article  Google Scholar 

  • Matsumura, S., K. Yamazaki, and T. Tokioka, 2010: Summertime land atmosphere interactions in response to anomalous springtime snow cover in northern Eurasia. J. Geophys. Res., 115, D20107, doi:10.1029/2009JD012342.

    Article  Google Scholar 

  • Matsumura, S., K. Yamazaki, and T. Sato, 2015: Role of Siberian land atmosphere coupling in the development of the August Okhotsk High in 2008. J. Meteor. Soc. Japan, 93, 229–244, doi:10.2151/jmsj.2015-013.

    Article  Google Scholar 

  • Oh, H., and K.-J. Ha, 2016: Prediction of dominant intraseasonal modes in the East Asian-western North Pacific summer monsoon. Climate Dyn., 47, 2025–2037, doi:10.1007/s00382-015-2948-8.

    Article  Google Scholar 

  • Park, H.-L., K.-H. Seo, and J.-H. Son, 2015: Development of a Dynamics-Based Statistical Prediction Model for the Changma Onset. J. Climate, 28, 6647–6666, doi:10.1175/JCLI-D-14-00502.1.

    Article  Google Scholar 

  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496, doi:10.1175/2007JCLI1824.1.

    Article  Google Scholar 

  • Robinson, D. A., K. F. Dewey, and R. R. Heim, 1993: Global snow cover monitoring: An update. Bull. Amer. Meteor. Soc. 74, 1689–1696, doi:10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2.

    Article  Google Scholar 

  • Seo, K.-H., J.-H. Son, and J.-Y. Lee, 2011: A new look at Changma. Korean Meteor. Soc., 21, 109–121 (in Korean with English abstract).

    Google Scholar 

  • Seo, K.-H., J.-H. Son, J.-Y. Lee, and H.-S. Park, 2015: Northern East Asian monsoon precipitation revealed by air mass variability and its prediction. J. Climate, 28, 6221–6233, doi:10.1175/JCLI-D-14-00526.1.

    Article  Google Scholar 

  • Wang, B., R. Wu, and X. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian Climate? J. Climate, 13, 1517–1536, doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2.

    Article  Google Scholar 

  • Wang, B., J.-G. Jhun, and B.-K. Moon, 2007: Variability and singularity of Seoul, South Korea, rainy season (1778-2004). J. Climate, 20, 2572–2580, doi:10.1175/JCLI4123.1.

    Article  Google Scholar 

  • Wang, B., B. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 2718–2722, doi:10.1073/pnas.1214626110.

    Article  Google Scholar 

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 630 pp.

    Google Scholar 

  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the east Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.

    Article  Google Scholar 

  • Xie, S.-P., K. Hu, J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747, doi:10.1175/2008JCLI2544.1.

    Article  Google Scholar 

  • Yang, J., Q. Liu, S.-P. Xie, Z. Liu, and L. Wu, 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708, doi:10.1029/2006GL028571.

    Google Scholar 

  • Yim, S.-Y., J.-G. Jhun, R. Lu, and B. Wang, 2010: Two distinct patterns of spring Eurasian snow cover anomaly and their impacts on the East Asian summer monsoon. J. Geophys. Res., 115, D22113, doi:10.1029/2010JD013996.

    Article  Google Scholar 

  • Yim, S.-Y., B. Wang, and W. Xing, 2014: Prediction of early summer rainfall over South China by a physical-empirical model. Climate Dyn., 43, 1883–1891, doi:10.1007/s00382-013-2014-3.

    Article  Google Scholar 

  • Yim, S.-Y., B. Wang, and W. Xing, 2015: Peak-summer East Asian rainfall predictability and prediction part II: Extratropical East Asia. Climate Dyn., 47, 15–30, doi:10.1007/s00382-015-2849-x.

    Article  Google Scholar 

  • Yun, K.-S., K.-H. Seo, and K.-J. Ha, 2008: Relationship between ENSO and northward propagating ISO in the East Asian summer monsoon system. J. Geophys. Res., 113, D14120, doi:10.1029/2008JD009901.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong-Hwan Seo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JY., Seo, KH., Son, JH. et al. Development of statistical prediction models for Changma precipitation: An ensemble approach. Asia-Pacific J Atmos Sci 53, 207–216 (2017). https://doi.org/10.1007/s13143-017-0027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0027-2

Key words

Navigation