Skip to main content
Log in

Multiple aspects of northern hemispheric wintertime cold extremes as revealed by Markov chain analysis

  • Published:
Asia-Pacific Journal of Atmospheric Sciences Aims and scope Submit manuscript

Abstract

High-impact cold extremes have continued to bring devastating socioeconomic losses in recent years. In order to explain the exposure to cold extremes more comprehensively, this study investigates multiple aspects of boreal winter cold extremes, i.e., frequency, persistence, and entropy (Markovian descriptors). Cold extremes are defined by the bottom 10th percentile of daily minimum temperatures during 1950-2014 over the northern hemisphere. The spatial and temporal distributions of Markovian descriptors during 65 years are examined. Climatological mean fields show the spatial coincidence of higher frequency, shorter persistence, and higher entropy of cold extremes, and vice versa. In regard to the temporal variations over six representative regions of North America, Europe, and Asia, all regions share a decreasing tendency of frequency with the increases in regional winter mean temperature. By contrast, persistence and entropy show their intrinsic decadal variability depending on regions irrespective of the regional temperature variability, which give different information from frequency. Therefore, the exposure to cold extremes would not simply decrease with regional warming. Rather these results indicate that the descriptors with multiple aspects of the extremes would be needed to embrace the topical features as well as the holistic nature of cold extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar, E., and Coauthors, 2005: Changes in precipitation and temperature extremes in Central America and Northern South America, 1961-2003. J. Geophys. Res., 110, D23107, doi:10.1029/2005JD006119.

    Article  Google Scholar 

  • Barnes, E. A., 2013: Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys. Res. Lett., 40, 4728–4733, doi:10.1002/grl.50880.

    Article  Google Scholar 

  • Blunden, J., and Coauthors, 2013: State of the climate in 2012. Bull. Amer. Meteor. Soc., 94, 1–238.

    Article  Google Scholar 

  • Caesar, J., L. Alexander, and R. Vose, 2006: Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res., 111, D05101, doi:10.1029/2005JD006280.

    Article  Google Scholar 

  • Domonkos, P., and K. Piotrowicz, 1998: Winter temperature characteristics in Central Europe. Int. J. Climatol., 18, 1405–1417, doi:10.1002/(SICI) 1097-0088(19981115)18:13<1405::AID-JOC323>3.0.CO;2-D.

    Article  Google Scholar 

  • Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074, doi:10.1126/science.289.5487. 2068.

    Article  Google Scholar 

  • Ferro, T. A., and J. Segers, 2003: Influence for clusters of extreme values. J. Roy. Stat. Soc., 65, 546–556, doi:10.1111/1467-9868.00401.

    Google Scholar 

  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, doi:10.1029/2012GL051000.

    Article  Google Scholar 

  • Gutschick, V. P., and H. BassiriRad, 2003: Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New. Phytol., 160, 21–42, doi: 10.1046/j.1469-8137.2003.00866.x.

    Article  Google Scholar 

  • Hartmann, D. L., 2015: Pacific sea surface temperature and the winter of 2014. Geophys. Res. Lett., 42, 1894–1902, doi:10.1002/2015GL063083.

    Article  Google Scholar 

  • Herring, S. C., M. P. Hoerling, J. P. Kossin, T. C. Peterson, and P. A. Stott, 2015: Explaining extreme events of 2014 from a climate perspective. Bull. Amer. Meteor. Soc., 96, 1–172, doi: 10.1175/BAMS-ExplainingExtremeEvents2014.1.

    Google Scholar 

  • Hill, M. F., J. D. Witman, and H. Caswell, 2004: Markov chain analysis of succession in a rocky subtidal community. American Nat., 164, 46–61, doi:10.1086/422340.

    Article  Google Scholar 

  • Horton, E. B., C. K. Folland, and D. E. Parker, 2001: The changing incidence of extremes in worldwide and Central England temperatures to the end of the twentieth century. Climatic Change, 50, 267–295, doi: 10.1023/A:1010603629772.

    Article  Google Scholar 

  • Inouye, T., K. Shinosaki, H. Sakamoto, S. Toi, S. Ukai, A. lyama, Y. Katsuda, and M. Hirano, 1991: Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 79, 204–210.

    Article  Google Scholar 

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1535 pp.

    Google Scholar 

  • Jones, P. D., E. B. Horton, C. K. Folland, M. Hulme, D. E. Parker, and T. A. Basnett, 1999: The use of indices to identify changes in climatic extremes. Climatic Change, 42, 131–149, doi:10.1023/A:1005468316-392.

    Article  Google Scholar 

  • Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi:10.1038/ncomms5646.

    Article  Google Scholar 

  • Kunkel, K. E., D. R. Easterling, K. Hubbard, and K. Redmond, 2004: Temporal variations in frost-free season in the United States: 1895-2000. Geophys. Res. Lett., 31, L03201, doi:10.1029/2003GL018624.

    Article  Google Scholar 

  • Lorenz, R., E. B. Jaeger, and S. I. Seneviratne, 2010: Persistence of heat waves and its link to soil moisture memory. Geophys. Res. Lett., 37, L09703, doi:10.1029/2010GL042764.

    Article  Google Scholar 

  • Meehl, G. A., and Coauthors, 2000: An introduction to trends in extreme weather and climate events: Observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull. Amer. Meteor. Soc., 81, 413–416, doi:10.1175/1520-0477(2000)081<0413: AITTIE>2.3.CO;2.

    Article  Google Scholar 

  • Mieruch, S., S. Noël, H. Bovensmann, J. P. Burrows, and J. A. Freund, 2010: Markov chain analysis of regional climates. Nonlin. Proc. Geophys., 17, 651–661, doi:10.5194/npg-17-651-2010.

    Article  Google Scholar 

  • Norris, J. R., 1998: Markov Chains. 1st pbk. ed. Cambridge University Press, 237 pp.

    Google Scholar 

  • Overland, J., J. A. Francis, R. Hall, E. Hanna, S.-J. Kim, and T. Vihma, 2015: The melting Arctic and midlatitude weather patterns: are they connected? J. Climate, 28, 7917–7932, doi:10.1175/JCLI-D-14-00822.1.

    Article  Google Scholar 

  • Parry, M., and Coauthors, 2001: Millions at Risk: Defining critical climate change threats and targets. Global environ. Change, 11, 181–183, doi: 10.1016/S0959-3780(01)00011-5.

    Article  Google Scholar 

  • Parry, M. L., and T. R. Cater, 1985: The effect of climatic variations on agricultural risk. Climatic Change, 7, 95–110, doi: 10.1007/BF00139443.

    Article  Google Scholar 

  • Pincus, S. M., 1991: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci., 88, 2297–2301.

    Article  Google Scholar 

  • Portis, D. H., M. P. Cellitti, W. L. Chapman, and J. E. Walsh, 2006: Lowfrequency variability and evolution of North American cold air outbreaks. Mon. Wea. Rev., 134, 579–597, doi:10.1175/MWR3083.1.

    Article  Google Scholar 

  • Rocklöv, J., K. Ebi, and B. Forsberg, 2011: Mortality related to temperature and persistent extreme temperatures: a study of cause-specific and age-stratified mortality. Occup. Environ. Med., 68, 531–536, doi: 10.1136/oem.2010.058818.

    Article  Google Scholar 

  • Rogers, J. C., and R. V. Rohli, 1991: Florida citrus freezes and polar anticyclones in the Great Plains. J. Climate, 4, 1103–1113, doi:10.1175/1520-0442(1991)004<1103:FCFAPA>2.0.CO;2.

    Article  Google Scholar 

  • Screen, J. A., and I. Simmonds, 2013: Exploring links between Arctic amplification and mid-latitude weather. Geophys. Res. Lett., 40, 959-964, doi:10.1002/grl.50174.

    Article  Google Scholar 

  • Styer, D. F., 2000: Insight into entropy. American J. Phys., 68, 1090–1096.

    Article  Google Scholar 

  • Secretariat, U. N. F. C. C. C., 2005: Compendium on methods and tools to evaluate impacts of and vulnerability and adaption to climate change. Final draft report, 143–155.

    Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi:10.1029/98GL00950.

    Article  Google Scholar 

  • Walsh, J. E., A. S. Phillips, D. H. Portis, and W. L. Chapman, 2001: Extreme cold outbreaks in the United States and Europe, 1948-99. J. Climate, 14}, 2642–2658, doi:10.1175/1520-0442(2001)014<2642:ECOITU> 2.0.CO

  • Westby, R. M., Y.-Y. Lee, and R. X. Black, 2013: Anomalous temperature regimes during the cool season: long-term trends, low-frequency mode modulation, and representation in CMIP5 simulations. J. Climate, 26, 9061–9076, doi:10.1175/JCLI-D-13-00003.1.

    Article  Google Scholar 

  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Science. Academic Press, 284–300.

    Google Scholar 

  • Woo, S. H., B. M. Kim, J. H. Jeong, S. J. Kim, and G. H. Lim, 2012: Decadal changes in surface air temperature variability and cold surge characteristics over northeast Asia and their relation with the Arctic Oscillation for the past three decades (1979-2011). J. Geophys. Res., 117, D18117, doi:10.1029/2011JD016929.

    Article  Google Scholar 

  • Zhang, Y., J. M. Wallace, and D. S. Battisti, 1997: ENSO-like interdecadal variability: 1900-93. J. Climate, 10, 1004–1020, doi:10.1175/1520-0442 (1997)010<1004:ELIV>2.0.CO;2.

    Article  Google Scholar 

  • Zhang, X., and Coauthors, 2005: Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res., 110, D22104, doi: 10.1029/2005JD006181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sang Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HS., Choi, YS., Kim, JH. et al. Multiple aspects of northern hemispheric wintertime cold extremes as revealed by Markov chain analysis. Asia-Pacific J Atmos Sci 53, 51–61 (2017). https://doi.org/10.1007/s13143-017-0004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13143-017-0004-9

Key words

Navigation