Skip to main content
Log in

An analysis of time-fractional heat transfer problem using two-scale approach

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

Porous media have been a significant subject of research for a long time due to their applicability in various sciences. This paper investigates the heat transfer phenomenon in the porous media. A convergent solution is obtained for a two-dimensional time-fractional equation arising in a porous soil heat transfer. He's polynomial and He's variational iteration method are used to accomplish the required goals. The fractional derivative used in the article is described by He’s definition. He's fractional complex transform is used to convert the fractional differential equation into its traditional partner differential equation, which can be solved iteratively. Graphical representations of the results are provided to demonstrate the efficacy of the methods used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ain, Q.T., He, J.H., Anjum, N., Ali, M.: The fractional complex transform: a novel approach to the time-fractional SCHRÖDINGER equation. Fractals 28(7), 2050141–2055578 (2020)

    Article  Google Scholar 

  • Ain, Q.T., He, J.H.: On two-scale dimension and its applications. Therm. Sci. 23, 1707–1712 (2019)

    Article  Google Scholar 

  • Ali, M., Anjum, N., Ain, Q.T., He, J.H.: Homotopy perturbation method for the attachment oscillator arising in nanotechnology. Fibers Polym. 2, 96 (2020)

    Google Scholar 

  • Anjum, N., Ain, Q.T.: Application of he’s fractional derivative and fractional complex transform for time fractional Camassa-Holm equation. Therm. Sci. 00, 450–450 (2019)

    Google Scholar 

  • Anjum, N., He, J.H.: Laplace transform: making the variational iteration method easier. Appl. Math. Lett. 92, 134–138 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • Anjum, N., He, J.H.: Nonlinear dynamic analysis of vibratory behavior of a graphene nano/microelectromechanical system. Math. Methods Appl. Sci. 2, 968 (2020)

    Google Scholar 

  • Anjum, N., He, J.H.: Analysis of nonlinear vibration of nano/microelectromechanical system switch induced by electromagnetic force under zero initial conditions. Alexandria Eng. J. 3, 61 (2020)

    Google Scholar 

  • Anjum, N., He, J.H.: Homotopy perturbation method for N/MEMS oscillators. Math. Methods Appl. Sci. 7, 1002 (2020)

    Google Scholar 

  • Anjum, N., He, J.H.: Higher-order homotopy perturbation method for conservative nonlinear oscillators generally and microelectromechanical systems’ oscillators particularly. Int. J. Modern Phys. B. 20, 503130 (2020)

    MathSciNet  MATH  Google Scholar 

  • Anjum, N., He, J.H.: Two modifications of the homotopy perturbation method for nonlinear oscillators. J. Appl. Comput. Mech. 9, 1420–1425 (2020)

    Google Scholar 

  • Cao, X.Q., Guo, Y.N., Zhang, C.Z., Hou, S.C., Peng, K.C.: Different groups of variational principles for Whitham-Broer-Kaup equations in shallow water. J. Appl. Comput. Mech. 2, 17 (2020)

    Google Scholar 

  • Cao, X.Q., Ya-Nan, G., Shi-Cheng, H., Cheng-Zhuo, Z., Ke-Cheng, P.: Variational principles for two kinds of coupled nonlinear equations in shallow water. Symmetry. 12, 850 (2020)

    Article  Google Scholar 

  • Cao, X.Q., Hou, S.C., Guo, Y.N.: Variational principle for (2+1)-dimensional Broer-Kaup equations with fractal derivatives. Fractals 28, 2050107 (2020)

    Article  Google Scholar 

  • Cao, X.Q.: Generalized variational principles for Boussinesq equation systems. Acta Phys. Sin. 2, 105–11 (2011)

    Google Scholar 

  • Cao, X.Q., Jun-Qiang, S., Wei-Min, Z., Jun, Z.: Variational principles for two kinds of extended Korteweg—de Vries equations. Chin. Phys. B. 20(9), 090401 (2011)

    Article  Google Scholar 

  • Faraz, N., Khan, Y., Jafari, H., Yildirim, A., Madani, M.: Fractional variational iteration method via modified Riemann-Liouville derivative. J. King Saud Univ. Sci. 23(4), 413–417 (2011)

    Article  Google Scholar 

  • He, J.H.: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178(3), 257–262 (1999a)

    Article  MathSciNet  MATH  Google Scholar 

  • He, J.H.: Variational iteration method for autonomous ordinary differential systems. App. Math. Comput. 114(2–3), 115–123 (2000a)

    Article  MathSciNet  MATH  Google Scholar 

  • He, J.H.: Variational iteration method for delay differential equations. Commun. Nonlinear Sci. Numer. Simul. 2(4), 235–236 (1997)

    Article  Google Scholar 

  • He, J.H.: Variational iteration method: a kind of nonlinear analytical technique: some examples. Int. J. Nonlinear Mech. 34(4), 699–708 (1999b)

    Article  MATH  Google Scholar 

  • He, J.H., Ain, Q.T.: New promises and future challenges of fractal calculus: from two-scale thermodynamics to fractal variational principle. Therm. Sci. 24, 659–685 (2020)

    Article  Google Scholar 

  • He, J.H., Elagan, S.K., Li, Z.B.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 376, 257–259 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • He, J.H., Li, Z.B., Wang, Q.: A new fractional derivative and its application to explanation of polar bear hairs. J. King Saud Univ. Sci. 28, 190–192 (2016)

    Article  Google Scholar 

  • He, J.H., Li, Z.B.: Converting fractional differential equations into partial differential equations. Therm. Sci. 16, 331–334 (2012)

    Article  Google Scholar 

  • He, J.H., Sun, C.: A variational principle for a thin film equation. J. Math. Chem. 57, 2075–2081 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  • He, J.H.: A coupling method of a homotopy technique and a perturbation technique for non-linear problems. Int. J. Non-Linear Mech. 35, 37–43 (2000b)

    Article  MathSciNet  MATH  Google Scholar 

  • He, J.H.: A short review on analytical methods for a fully fourth-order nonlinear integral boundary value problem with fractal derivatives. Int. J. Numer. Methods Heat Fluid Flow. 6, 0961–5539 (2020)

    Google Scholar 

  • He, J.H.: Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018)

    Article  Google Scholar 

  • He, J.H.: Lagrange crisis and generalized variational principle for 3D unsteady flow. Int J Numer Methods Heat Fluid Flow 11, 0961–5539 (2019)

    Google Scholar 

  • He, J.H.: The simplest approach to nonlinear oscillators. Results Phys. 15, 102546 (2019)

    Article  Google Scholar 

  • He, J.H.: Α review on some new recently developed nonlinear analytical techniques. Int. J. Nonlinear Sci. Numer. Simul. 1, 51–70 (2000c)

    Article  MathSciNet  MATH  Google Scholar 

  • Khan, Y.: A variational approach for novel solitary solutions of FitzHugh–Nagumo equation arising in the nonlinear reaction–diffusion equation. Int. J. Numer. Methods Heat Fluid Flow 2, 17 (2020)

    Google Scholar 

  • Khan, Y., Faraz, N., Yildirim, A.: New soliton solutions of the generalized Zakharov equations using He’s variational approach. Appl. Math. Lett. 24(6), 965–968 (2011a)

    Article  MathSciNet  MATH  Google Scholar 

  • Khan, Y.: A new necessary condition of soliton solutions for Kawahara equation arising in physics. Optik 155, 273–275 (2018)

    Article  Google Scholar 

  • Khan, Y.: Fractal modification of complex Ginzburg-Landau model arising in the oscillating phenomena. Results Phys. 18, 103324 (2020)

    Article  Google Scholar 

  • Khan, Y., Wu, Q.: Homotopy perturbation transform method for nonlinear equations using He’s polynomials. Comput. Math. Appl. 61(8), 1963–1967 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Khan, Y., Faraz, N., Yildirim, A., Wu, Q.: Fractional variational iteration method for fractional initial-boundary value problems arising in the application of nonlinear science. Comput. Math. Appl. 62(5), 2273–2278 (2011b)

    Article  MathSciNet  MATH  Google Scholar 

  • Khan, Y., Wu, Q., Faraz, N., Yildirim, A., Madani, M.: A new fractional analytical approach via a modified Riemann-Liouville derivative. Appl. Math. Lett. 25(10), 1340–1346 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X.X., Tian, D., He, C.H., He, J.H.: A fractal modification of the surface coverage model for an electrochemical arsenic sensor. Electro Chemica Acta. 296, 491–493 (2019)

    Article  Google Scholar 

  • Li, Z.B., He, J.H.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 15, 970–973 (2010)

    MathSciNet  MATH  Google Scholar 

  • Li, Z.B., Zhu, W.H., He, J.H.: Exact solutions of time-fractional heat conduction equation by the fractional complex transform. Therm. Sci. 16, 335–338 (2012)

    Article  Google Scholar 

  • Liu, F.J., Li, Z.B., Zhang, S., Liu, H.Y.: He’s fractional derivative for heat conduction in a fractal medium arising in silkworm cocoon hierarchy. Therm. Sci. 19, 1155–1159 (2015)

    Article  Google Scholar 

  • Liu, H.Y., Li, Z., Yao, Y.: A fractional nonlinear system for release oscillation of silver ions from hollow fibers. J. Low Freq. Noise Vib. Active Control. 38, 88–92 (2019)

    Article  Google Scholar 

  • Ren, Z.F., Yao, S.W., He, J.H.: He’s multiple scales method for nonlinear vibrations. J. Low Freq. Noise Vib. Active Control. 38, 1708–1712 (2019)

    Article  Google Scholar 

  • Tian, D., Ain, Q.T., Anjum, N.: Fractal N/MEMS: From pull-in instability to pull-in stability. Fractals. 2, 19 (2020)

    Google Scholar 

  • Wang, K.J.: A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge. Eur. Phys. J. plus 135, 871 (2020)

    Article  Google Scholar 

  • Wang, K.J.: Variational principle and approximate solution for the generalized burgers–huxley equation with fractal derivative. Fractals. 11, 13 (2021)

    Google Scholar 

  • Wang, K.J.: G-D Wang variational principle and approximate solution for the fractal generalized benjamin–bona–mahony–burgers equation in fluid mechanics. Fractals. 10, 97 (2021)

    Google Scholar 

  • Wang, K.L., He, C.H.: A remark on Wang’s fractal variational principle. Fractals 27, 1950134–1950276 (2019)

    Article  MATH  Google Scholar 

  • Wang, K.L., Liu, S.Y.: He’s fractional derivative and its application for fractional Fornberg-Whitham equation. Therm. Sci. 21, 2049–2055 (2017)

    Article  Google Scholar 

  • Wang, Y., An, J.Y.: Amplitude–frequency relationship to a fractional Duffing oscillator arising in microphysics and tsunami motion. J. Low Freq. Noise Vib. Active Control. 38, 1008–1012 (2019)

    Article  Google Scholar 

  • Wang, Y., Deng, Q.: Fractal derivative model for tsunami traveling. Fractals 27, 1950017 (2019)

    Article  MathSciNet  Google Scholar 

  • Wang, Y.A.N., An, J.Y., Wang, X.: A variational formulation for anisotropic wave traveling in a porous medium. Fractals 27, 1950047 (2019)

    Article  MathSciNet  Google Scholar 

  • Xu, Y., Yang, T., Fuller, C.R., Sun, Y., Liu, Z.: A theoretical analysis on the active structural acoustical control of a vibration isolation system with a coupled plate-shell foundation. Int. J. Mech. Sci. 170, 105334 (2020)

    Article  Google Scholar 

  • Yang, X.J., Baleanu, D., Khan, Y., Mohyud-Din, S.T.: Local fractional variational iteration method for diffusion and wave equations on Cantor sets. Rom. J. Phys. 59(1–2), 36–48 (2014)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qura Tul Ain.

Ethics declarations

Conflict of interest

The author declares no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ain, Q.T., Anjum, N. & He, CH. An analysis of time-fractional heat transfer problem using two-scale approach. Int J Geomath 12, 18 (2021). https://doi.org/10.1007/s13137-021-00187-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-021-00187-x

Keywords

Mathematical Subject Classification

Navigation