Skip to main content
Log in

Factors dominating bacterioplankton abundance and production in the Nordic seas and the Chukchi Sea in summer 2012

  • Published:
Acta Oceanologica Sinica Aims and scope Submit manuscript

Abstract

Abundance and production of bacterioplankton were measured in the Nordic seas and Chukchi Sea during the 5th Chinese Arctic Research Expedition in summer 2012. The results showed that average bacterial abundances ranged from 3.31×1011 cells/m3 to 2.25×1011 cells/m3, and average bacterial productions (calculated by carbon) were 0.46 mg/(m3·d) and 0.54 mg/(m3·d) in the Nordic seas and Chukchi Sea, respectively. T-test result showed that bacterial abundances were significantly different between the Nordic seas and Chukchi Sea, however, no significant difference was observed regarding bacterial productions. Based on the slope of lg bacterial biomass versus lg bacterial production, bacterial communities in the Nordic seas and Chukchi Sea were moderately dominated by bottom-up control. Both Pearson correlation analysis and multivariable linear regression indicated that temperature had significant positive correlation with bacterial abundance in the Chukchi Sea, while no correlations with productions in both areas. Meanwhile, Chl a had positive correlations with both bacterial abundance and production in these two regions. As the temperature and Chl a keep changing in the future, we suggest that both bacterial abundance and production been hanced in the Chukchi Sea but weaken in the Nordic seas, though the enhancement will not be dramatic as a result of higher pressure of predation and viral lysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen J T, Brown L, Sanders R, et al. 2005. Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic. Nature, 437(7059): 728–732

    Article  Google Scholar 

  • Anderson M R, Rivkin R B. 2001. Seasonal patterns in grazing mortality of bacterioplankton in polar oceans: a bipolar comparison. Aquat Microb Ecol, 25(2): C09011

    Google Scholar 

  • Arrigo K R, Perovich D K, Pickart R S, et al. 2012. Massive phytoplankton blooms under Arctic sea ice. Science, 336(6087): 1408

    Article  Google Scholar 

  • Arrigo K R, Perovich D K, Pickart R S, et al. 2014. Phytoplankton blooms beneath the sea ice in the Chukchi sea. Deep Sea Res Part II: Top Stud Oceanogr, 105: 1–16

    Article  Google Scholar 

  • Arrigo K R, van Dijken G L. 2011. Secular trends in Arctic Ocean net primary production. J Geophys Res Oceans, 116(C9): 1527–1540

    Article  Google Scholar 

  • Arrigo K R, van Dijken G L. 2015. Continued increases in Arctic Ocean primary production. Prog Oceanogr, 136: 60–70

    Article  Google Scholar 

  • Azam F, Fenchel T, Field J G, et al. 1983. The ecological role of watercolumn microbes in the sea. Mar Ecol Prog Ser, 10: 257–263

    Article  Google Scholar 

  • Baines S B, Pace M L. 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: patterns across marine and freshwater systems. Limnol Oceanogr, 36(6): 1078–1090

    Article  Google Scholar 

  • Becagli S, Lazzara L, Marchese C, et al. 2016. Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic. Atmos Environ, 136: 1–15

    Article  Google Scholar 

  • Billen G, Lancelot C, de Becker E, et al. 1988a. Modelling microbial processes (phyto-and bacterioplankton) in the Schelde estuary. Hydrobiol Bull, 22(1): 43–55

    Article  Google Scholar 

  • Billen G, Servais P, Becquevort S. 1990. Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control?. Hydrobiologia, 207(1): 37–42

    Article  Google Scholar 

  • Billen G, Servais P, Fontigny A A. 1988b. Growth and mortality in bacterial population dynamics of aquatic environments. Arch Hydrobiol Beih Ergebn Limnol, 31: 173–183

    Google Scholar 

  • Boras J A, Sala M M, Arrieta J M, et al. 2010. Effect of ice melting on bacterial carbon fluxes channelled by viruses and protists in the Arctic Ocean. Polar Biol, 33(12): 1695–1707

    Article  Google Scholar 

  • Børsheim K Y. 2000. Bacterial production rates and concentrations of organic carbon at the end of the growing season in the Greenland Sea. Aquat Microb Ecol, 21(2): 115–123

    Article  Google Scholar 

  • Brandsma J, Martínez J M, Slagter H A, et al. 2012. Microbial biogeography of the North Sea during summer. Biogeochemistry, 113(1–3): 119–136

    Google Scholar 

  • Carmack E, Polyakov I, Padman L, et al. 2015. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bull Am Meteorlol Soc, 96(12): 2079–2105

    Article  Google Scholar 

  • Chen Min, Huang Yipu, Guo Laodong, et al. 2002. Biological productivity and carbon cycling in the Arctic Ocean. Chin Sci Bull, 47(12): 1037–1040

    Article  Google Scholar 

  • Cooper L W, Frey K E, Logvinova C, et al. 2016. Variations in the proportions of melted sea ice and runoff in surface waters of the Chukchi Sea: a retrospective analysis, 1990–2012, and analysis of the implications of melted sea ice in an under-ice bloom. Deep Sea Res Part II: Top Stud Oceanogr, 130: 6–13

    Article  Google Scholar 

  • Cuevas L A, Egge J K, Thingstad T F, et al. 2011. Organic carbon and mineral nutrient limitation of oxygen consumption, bacterial growth and efficiency in the Norwegian Sea. Polar Biol, 34(6): 871–882

    Article  Google Scholar 

  • Delille D, Gleizon F, Delille B. 2007. Spatial and temporal variation of bacterioplankton in a sub-Antarctic coastal area (Kerguelen Archipelago). J Mar Syst, 68(3–4): 366–380

    Article  Google Scholar 

  • Dortch Q, Packard T T. 1989. Differences in biomass structure between oligotrophic and eutrophic marine ecosystems. Deep Sea Res Part A Oceanogr Res Papers, 36(2): 223–240

    Article  Google Scholar 

  • Duarte C M, Agustí S, Vaqué D, et al. 2005. Experimental test of bacteria-phytoplankton coupling in the Southern Ocean. Limnol Oceanogr, 50(6): 1844–1854

    Article  Google Scholar 

  • Ducklow H W. 1992. Factors regulating bottom-up control of bacteria biomass in open ocean plankton communities. Ergeb Limnol, 37: 207–217

    Google Scholar 

  • Ducklow H W. 1999. The bacterial component of the oceanic euphotic zone. FEMS Microbiol Ecol, 30(1): 1–10

    Article  Google Scholar 

  • Erga S R, Ssebiyonga N, Hamre B, et al. 2014. Environmental control of phytoplankton distribution and photosynthetic performance at the Jan Mayen Front in the Norwegian Sea. J Mar Syst, 130: 193–205

    Article  Google Scholar 

  • Fujiwara A, Hirawake T, Suzuki K, et al. 2014. Timing of sea ice retreat can alter phytoplankton community structure in the western Arctic Ocean. Biogeosciences, 11(7): 1705–1716

    Article  Google Scholar 

  • Gong D L, Pickart R S. 2016. Early summer water mass transformation in the eastern Chukchi Sea. Deep Sea Res Part II: Top Stud Oceanogr, 130: 43–55

    Article  Google Scholar 

  • Gonzalez J M, Sherr E B, Sherr B F. 1990. Size-selective grazing on bacteria by natural assemblages of estuarine flagellates and ciliates. Appl Environ Microb, 56(3): 583–589

    Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K. 1999. Methods of Seawater Analysis. 3rd ed. Weinheim: Verlag Chemie GmbH, 600

    Book  Google Scholar 

  • Hansen B, Østerhus S. 2000. North Atlantic-Nordic Seas exchanges. Prog Oceanogr, 45(2): 109–208

    Article  Google Scholar 

  • Hardoon D R, Szedmak S R, Shawe-Taylor J R. 2004. Canonical correlation analysis: an overview with application to learning methods. Neural Comput, 16(12): 2639–2664

    Article  Google Scholar 

  • Howard-Jones M H, Ballard V D, Allen A E, et al. 2002. Distribution of bacterial biomass and activity in the marginal ice zone of the central Barents Sea during summer. J Mar Syst, 38(1–2): 77–91

    Article  Google Scholar 

  • Jackson J M, Carmack E C, Mclaughlin F A, et al. 2010. Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J Geophys Res, 115(C5): C05021

    Article  Google Scholar 

  • Jeffries M O, Richter-Menge J, Overland J E. 2014. Arctic Report Card 2014. http://www.arctic.noaa.gov/Report-Card/Report-Card-2016 [2014-12-17/2015-4-1]

    Google Scholar 

  • Ji R B, Jin M B, Varpe Ø. 2013. Sea ice phenology and timing of primary production pulses in the Arctic Ocean. Glob Change Biol, 19(3): 734–741

    Article  Google Scholar 

  • Jiao Nianzhi, Chen Feng, Zeng Yonghui, et al. 2011. Microbial carbon pump in the ocean—from microbial ecological process to carbon cycle mechanism. J Xiamen Univ (Nat Sci) (in Chinese), 50(2): 387–401

    Google Scholar 

  • Jiao Nianzhi, Herndl G J, Hansell D A, et al. 2010. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol, 8(8): 593–599

    Article  Google Scholar 

  • Kirchman D L. 1994. The uptake of inorganic nutrients by heterotrophic bacteria. Microb Ecol, 28(2): 255–271

    Article  Google Scholar 

  • Kirchman D L, Hill V, Cottrell M T, et al. 2009a. Standing stocks, production, and respiration of phyto-plankton and heterotrophic bacteria in the western Arctic Ocean. Deep Sea Res Part II: Top Stud Oceanogr, 56(17): 1237–1248

    Article  Google Scholar 

  • Kirchman D L, Morán X A, Ducklow H. 2009b. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat Rev Microbiol, 7(6): 451–459

    Google Scholar 

  • Knap A, Michaels A, Close A, et al. 1994. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. Paris: UNESCO

    Google Scholar 

  • Kritzberg E S, Arrieta J M, Duarte C M. 2010. Temperature and phosphorus regulating carbon flux through bacteria in a coastal marine system. Aquat Microb Ecol, 58(2): 141–151

    Article  Google Scholar 

  • Kuosa H, Kaartokallio H. 2006. Experimental evidence on nutrient and substrate limitation of Baltic Sea sea-ice algae and bacteria. Hydrobiologia, 554(1): 1–10

    Article  Google Scholar 

  • Lawrence J, Popova E, Yool A, et al. 2015. On the vertical phytoplankton response to an ice-free Arctic Ocean. J Geophys Res Oceans, 120(12): 8571–8582

    Article  Google Scholar 

  • Lin Ling, He Jianfeng, Zhao Yunlong, et al. 2012. Flow cytometry investigation of picoplankton across latitudes and along the circum Antarctic Ocean. Acta Oceanol Sinica, 31(1): 134–142

    Article  Google Scholar 

  • Luchin V, Panteleev G. 2014. Thermal regimes in the Chukchi Sea from 1941 to 2008. Deep Sea Res Part II: Top Stud Oceanogr, 109: 14–26

    Article  Google Scholar 

  • Mathis J T, Pickart R S, Hansell D A, et al. 2007. Eddy transport of organic carbon and nutrients from the Chukchi Shelf: impact on the upper halocline of the western Arctic Ocean. J Geophys Res Oceans, 112(C5): C05011

    Article  Google Scholar 

  • McLaughlin F A, Carmack E C. 2010. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior, 2003–2009. Geophys Res Lett, 37(24): L24602

    Article  Google Scholar 

  • McManus G B, Fuhrman J A. 1988. Control of marine bacterioplankton populations: measurement and significance of grazing. Hydrobiologia, 159(1): 51–62

    Article  Google Scholar 

  • Middelboe M, Lundsgaard C. 2003. Microbial activity in the Greenland Sea: role of DOC lability, mineral nutrients and temperature. Aquat Microb Ecol, 32(2): 151–163

    Article  Google Scholar 

  • Nguyen D, Maranger R, Tremblay J E, et al. 2012. Respiration and bacterial carbon dynamics in the Amundsen Gulf, western Canadian Arctic. J Geophys Res Oceans, 117(C9): C00G16

    Article  Google Scholar 

  • Nikrad M P, Cottrell M T, Kirchman D L. 2012. Abundance and single-cell activity of heterotrophic bacterial groups in the western Arctic Ocean in summer and winter. Appl Environ Microbiol, 78(7): 2402–2409

    Article  Google Scholar 

  • Norrman B, Zwelfel U L, Hopkinson C S Jr, et al. 1995. Production and utilization of dissolved organic carbon during an experimental diatom bloom. Limnol Oceanogr, 40(5): 898–907

    Article  Google Scholar 

  • Ortega-Retuerta E, Fichot C G, Arrigo K R, et al. 2014. Response of marine bacterioplankton to a massive under-ice phytoplankton bloom in the Chukchi Sea (Western Arctic Ocean). Deep Sea Res Part II: Top Stud Oceanogr, 105: 74–84

    Article  Google Scholar 

  • Ortega-Retuerta E, Jeffrey W H, Babin M, et al. 2012. Carbon fluxes in the Canadian Arctic: patterns and drivers of bacterial abundance, production and respiration on the Beaufort Sea margin. Biogeosciences, 9(9): 3679–3692

    Article  Google Scholar 

  • Orvik K A, Skagseth Ø. 2003. The impact of the wind stress curl in the North Atlantic on the Atlantic inflow to the Norwegian Sea toward the Arctic. Geophys Res Lett, 30(17): 1884

    Article  Google Scholar 

  • Pakulski J D, Baldwin A, Dean A L, et al. 2007. Responses of heterotrophic bacteria to solar irradiance in the eastern Pacific Ocean. Aquat Microb Ecol, 47(2): 153–162

    Article  Google Scholar 

  • Pomeroy L R, Deibel D. 1986. Temperature regulation of bacterial activity during the spring bloom in newfoundland coastal waters. Science, 233(4761): 359–361

    Article  Google Scholar 

  • Pomeroy L R, Macko S A, Ostrom P H, et al. 1990. The microbial food web in Arctic seawater concentration of dissolved free amino acids and bacterial abundance and activity in the Arctic Ocean and in Resolute Passage. Mar Ecol Prog Ser, 61: 31–40

    Article  Google Scholar 

  • Pomeroy L R, Wiebe W J, Deibel D, et al. 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar Ecol Prog Ser, 75: 143–159

    Article  Google Scholar 

  • Pomeroy L R, Wiebe W J. 2001. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Microb Ecol, 23(2): 187–204

    Article  Google Scholar 

  • Pomeroy L R, Williams P J L, Azam F, et al. 2007. The microbial loop. Oceanography, 20(2): 28–33

    Article  Google Scholar 

  • Rivkin R B, Anderson M R, Lajzerowicz C. 1996. Microbial processes in cold oceans: I. Relationship between temperature and bacterial growth rate. Aqua Microbial Ecol, 10(3): 243–254

    Google Scholar 

  • Robinson C, Williams P J L. 1993. Temperature and Antarctic plankton community respiration. J Plankton Res, 15(9): 1035–1051

    Article  Google Scholar 

  • Sala M M, Arrieta J M, Boras J A, et al. 2010. The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biol, 33(12): 1683–1694

    Article  Google Scholar 

  • Sherr B F, Sherr E B. 2003. Community respiration/production and bacterial activity in the upper water column of the central Arctic Ocean. Deep Sea Res Part I: Oceanogra Res Papers, 50(4): 529–542

    Article  Google Scholar 

  • Šolic M, Krstulovic N, Vilibic I, et al. 2009. Variability in the bottomup and top-down controls of bacteria on trophic and temporal scales in the middle Adriatic Sea. Aquat Microb Ecol, 58(1): 15–29

    Google Scholar 

  • Steiner N S, Sou T, Deal C, et al. 2015. The future of the subsurface chlorophyll-a Maximum in the Canada Basin—a model intercomparison. J Geophys Res Oceans, 121(1): 387–409

    Article  Google Scholar 

  • Sturluson M, Nielsen T G, Wassmann P. 2008. Bacterial abundance, biomass and production during spring blooms in the northern Barents Sea. Deep Sea Res Part II: Top Stud Oceanogr, 55(20–21): 2186–2198

    Article  Google Scholar 

  • Swift J, Aagaard K. 1981. Seasonal transitions and water mass formation in the Iceland and Greenland Seas. Deep Sea Res Part A: Oceanogr Res Pap, 28(10): 1107–1129

    Article  Google Scholar 

  • Uchimiya M, Fukuda H, Nishino S, et al. 2011. Does freshening of surface water enhance heterotrophic prokaryote production in the western Arctic? Empirical evidence from the Canada Basin during September 2009. J Oceanogr, 67(5): 589–599

    Article  Google Scholar 

  • Vaqué D, Guadayol Ò, Peters F, et al. 2009. Differential response of grazing and bacterial heterotrophic production to experimental warming in Antarctic waters. Aquat Microb Ecol, 54(1): 101–112

    Article  Google Scholar 

  • von Parsons T R, Maita Y, Lalli C M. 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. New York: Pergamon Press, 173

    Google Scholar 

  • Wang Deli, Henrichs S M, Guo Laodong. 2006. Distributions of nutrients, dissolved organic carbon and carbohydrates in the western Arctic Ocean. Cont Shelf Res, 26(14): 1654–1667

    Article  Google Scholar 

  • Weiss S, van Treuren W, Lozupone C, et al. 2016. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J, 10(7): 1669–1691

    Article  Google Scholar 

  • Wilkins D, Yau S, Williams T J, et al. 2013. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol Rev, 37(3): 303–335

    Article  Google Scholar 

  • Yang E J, Ha H K, Kang S H. 2015. Microzooplankton community structure and grazing impact on major phytoplankton in the Chukchi sea and the western Canada basin, Arctic ocean. Deep Sea Res Part II: Top Stud Oceanogr, 120: 91–102

    Article  Google Scholar 

Download references

Acknowledgements

Data used in this paper were collected during the 5th Chinese National Arctic Research Expedition in summer 2012. The authors are grateful to the Chinese Arctic and Antarctic Administration for the access to R/V Xuelong and to the whole expedition team for their great support during the in situ observation. We also thank Jin Haiyan and Hao Qiang for kindly providing the data of nutrients and Chl a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng He.

Additional information

Foundation item: The National Natural Science Foundation of China under contract Nos 41476168 and 41206189; the Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract No. CHINARE-2011-2015; the Public Science and Technology Research Funds Projects of Ocean under contract No. 20110522.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., He, J., Chen, M. et al. Factors dominating bacterioplankton abundance and production in the Nordic seas and the Chukchi Sea in summer 2012. Acta Oceanol. Sin. 36, 153–162 (2017). https://doi.org/10.1007/s13131-017-1031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13131-017-1031-1

Keywords

Navigation