Skip to main content

Advertisement

Log in

From glacial refugia to wide distribution range: demographic expansion of Loropetalum chinense (Hamamelidaceae) in Chinese subtropical evergreen broadleaved forest

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The subtropical evergreen broadleaved forest (STEBF) in China is globally one of the most diverse and biologically important forest systems. There has been a long-term debate whether this region was affected dramatically during Pleistocene glaciation and deglaciation cycles, e.g., in terms of range dimensions and changes in species richness. Here we report a large-scale phylogeographic study, focusing on a widespread and typical constituent species of the Chinese STEBF, Loropetalum chinense (R. Br.) Oliver (Hamamelidaceae). In total, 56 populations spanning the entire distribution range of L. chinense were analyzed. Chloroplast DNA sequence variation and AFLPs as molecular marker systems were used in combination with ecological niche modeling (ENM). ENM indicated that the distribution ranges of L. chinense were contracted remarkably and most populations retreated southward. Thereby, based on ENM, geographical distribution pattern of cpDNA haplotypes, and AFLP genetic clusters, one glacial refuge was inferred in the Nanling Mountains in southern China, and a second glacial refuge was identified in Three Gorges Area and Dabashan Mountains in Chongqing Province, southwestern China. In addition to ENM, with mismatch distribution analysis and Bayesian skyline plots, demographic expansion was inferred to take place about 10.6 kya. The current geographic distribution pattern of genetic variation might be shaped by northward and eastward expansion along Nanling Mountains and Wuyishan Mountains, respectively. Additionally, the two mountain ranges were supposed to act as geographical barriers restricting gene flow between the southern and northern populations. Herewith, we aim to further contribute a case study of the phylogeographic history of this vegetation type, which will help to improve deeper understanding of past vegetation dynamics and floristic evolutionary pathways of the Chinese STEBF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott, R. J., & Brochmann, C. (2003). History and evolution of the arctic flora: in the footsteps of Eric Hultén. Molecular Ecology, 12, 299–313.

    Article  PubMed  Google Scholar 

  • Abbott, R. J., Smith, L., Milne, R. I., Crawford, R. M., Wolf, K., & Balfour, J. (2000). Molecular analysis of plant migration and refugia in the Arctic. Science, 289, 1343–1346.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, K. D., Tzedakis, P. C., & Willis, K. J. (1991). Quaternary refugia of north European trees. Journal of Biogeography, 18, 103–115.

    Article  Google Scholar 

  • Chen, D. M., Zhang, X. X., Kang, H. Z., Sun, X., Yin, S., Du, H. M., Yamanaka, N., Gapare, W., Wu, H. X., & Liu, C. J. (2012a). Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: multiple glacial refugia and mainland-migrated island populations. Plos One, 7, e47168.

    Article  Google Scholar 

  • Chen, S. C., Zhang, L., Zeng, J., Shi, F., Yang, H., Mao, Y. R., et al. (2012b). Geographic variation of chloroplast DNA in Platycarya strobilacea (Juglandaceae). Journal of Systematics and Evolution, 50, 374–385.

    Article  Google Scholar 

  • Chiang, T. Y., & Schaal, B. A. (1999). Phylogeography of North American populations of the moss species Hylocomium splendens based on the nucleotide sequence of internal transcribed spacer 2 of nuclear ribosomal DNA. Molecular Ecology, 8, 1037–1042.

    Article  CAS  Google Scholar 

  • Chiang, T. Y., Schaal, B. A., & Peng, C. I. (1998). Universal primers for amplification and sequencing a noncoding spacer between atpB and rbcL genes of chloroplast DNA. Botanical Bulletin of Academia Sinica, 39, 245–250.

    CAS  Google Scholar 

  • Chiang, Y. C., Huang, K. H., Schaal, B. A., Ge, X. J., Hsu, T. W., & Chiang, T. Y. (2006). Contrasting phylogeographical patterns between mainland and island taxa of the Pinus luchuensis complex. Molecular Ecology, 15, 765–779.

    Article  CAS  PubMed  Google Scholar 

  • Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.

    Article  CAS  PubMed  Google Scholar 

  • Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., et al. (2006). The community climate system model version 3 (CCSM3). American Meteorological Society, 19, 2122–2143.

    Google Scholar 

  • Comes, H. P., & Kaderit, J. W. (1998). The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science, 3, 432–438.

    Article  Google Scholar 

  • Corander, J., & Marttinen, P. (2006). Bayesian identification of admixture events using multi-locus molecular markers. Molecular Ecology, 15, 2833–2843.

    Article  PubMed  Google Scholar 

  • Corander, J., Waldmann, P., & Sillanpää, M. J. (2003). Bayesian analysis of genetic differentiation between populations. Genetics, 163, 367–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corander, J., Waldmann, P., Marttinen, P., & Sillanpää, M. J. (2004). Baps 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics, 20, 2363–2369.

    Article  CAS  PubMed  Google Scholar 

  • Dasmahapatral, K. K., Lacy, R. C., & Amos, W. (2008). Estimating levels of inbreeding using AFLP markers. Heredity, 100, 286–295.

    Article  Google Scholar 

  • Doyle, J. J. (1991). DNA protocols for plants: CTAB total DNA isolation. In G. M. Hewitt & A. W. B. Johnston (Eds.), A molecular techniques in taxonomy (pp. 283–293). Berlin: Springer.

    Chapter  Google Scholar 

  • Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochemistry Bulletin, 19, 11–15.

    Google Scholar 

  • Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214–221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Du, Y. J., Mi, X. C., Liu, X. J., Chen, L., & Ma, K. P. (2009). Seed dispersal phenology and dispersal syndromes in a subtropical broad-leaved forest of China. Forest Ecology and Management, 258, 1147–1152.

    Article  Google Scholar 

  • Edgar, R. C. (2004a). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, R. C. (2004b). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113–131.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehrich, D. (2006). AFLPdat: a collection of R functions for convenient handling of AFLP data. Molecular Ecology Notes, 6, 603–604.

    Article  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 47–50.

    CAS  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.

    Article  Google Scholar 

  • Fu, Y. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, L. M., Möller, M., Zhang, X. M., Hollingsworth, M. L., Liu, J., Mill, R. R., et al. (2007). High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molecular Ecology, 16, 4684–4698.

    Article  CAS  PubMed  Google Scholar 

  • Gong, W., Chuan, C., Dobeš, C., Fu, C. X., & Koch, M. A. (2008). Phylogeography of a living fossil: Pleistocene glaciations forced Ginkgo biloba L. (Ginkgoaceae) into two refuge areas in China with limited subsequent postglacial expansion. Molecular Phylogenetics and Evolution, 48, 1094–1105.

    Article  PubMed  Google Scholar 

  • Gong, W., Gu, L., & Zhang, D. X. (2010). Low genetic diversity and high genetic divergence caused by inbreeding and geographical isolation in the populations of endangered species Loropetalum subcordatum (Hamamelidaceae) endemic to China. Conservation Genetics, 11, 2281–2288.

    Article  Google Scholar 

  • Gu, L. (2008). Pollination biology of representative species in Hamamelidaceae. Guangzhou: Southern China Botanical Garden, the Chinese Academy of Sciences, PhD thesis.

  • Gu, L., & Zhang, D. X. (2008). Autogamy of an endangered species: Loropetalum subcordatum (Hamamelidaceae). Journal of Systematics and Evolution, 46, 651–657.

    Google Scholar 

  • Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hamilton, M. B. (1999). Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Molecular Ecology Notes, 8, 521–523.

    CAS  Google Scholar 

  • Hamrick, J. T., & Godt, M. J. (1996). Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society, B: Biological Sciences, 351, 1291–1298.

    Article  Google Scholar 

  • Harpending, R. C. (1994). Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology, 66, 591–600.

    CAS  PubMed  Google Scholar 

  • Harrison, S. P., Yu, G., Takahar, H., & Prentice, I. C. (2001). Diversity of temperate plants in East Asia. Nature, 413, 129–130.

    Article  CAS  PubMed  Google Scholar 

  • Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.

    Article  Google Scholar 

  • Hewitt, G. M. (2000). The genetic legacy of the Quaternary ice age. Nature, 405, 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society, B: Biological Sciences, 359, 183–195.

    Article  CAS  PubMed Central  Google Scholar 

  • Hijmans, R. J., Cameron, S., Parra, J., Jones, P., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.

    Article  Google Scholar 

  • Hou, H. Y. (1983). Vegetation of China with reference to its geographical distribution. Annals of the Missouri Botanical Garden, 70, 509–548.

    Article  Google Scholar 

  • Hu, S. H., Hampe, A., & Petit, R. J. (2009). Paleoecology meets genetics: deciphering past vegetational dynamics. Frontiers in Ecology and the Environment, 7, 371–379.

    Article  Google Scholar 

  • Huang, S., Chiang, Y. C., Schaal, B. A., Chou, C. H., & Chiang, T. Y. (2001). Organelle DNA phylogeography of Cycas taitungensis, a relict species in Taiwan. Molecular Ecology, 10, 2669–2681.

    Article  CAS  PubMed  Google Scholar 

  • Ickert-Bond, A., & Wen, J. (2006). Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Molecular Phylogenetics and Evolution, 39, 512–528.

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo, M., Senalik, D. A., Ellison, S. L., Grzebelus, D., Cavagnaro, P. F., Allender, C., Brunet, J., Spooner, D. M., Van Deynze, A., & Simon, P. W. (2013). Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). American Journal of Botany, 100, 930–938.

    Article  PubMed  Google Scholar 

  • Li, J. H., Bogle, A. L., & Klein, A. S. (1999a). Phylogenetic relationships of the Hamamelidaceae inferred from sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA. American Journal of Botany, 86, 1027–1037.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. H., Bogle, A. L., & Klein, A. S. (1999b). Phylogenetic relationships in the Hamamelidaceae: evidence from the nucleotide sequences of the plastid gene matK. Plant Systematics and Evolution, 218, 205–219.

    Article  CAS  Google Scholar 

  • Li, J. J., Shu, Q., Zhou, S. Z., Zhao, Z. J., & Zhang, J. M. (2004). Review and prospects of Quaternary glaciation research in China. Journal of Glaciology and Geocryology, 3, 235–243.

    Google Scholar 

  • Li, Y., Yan, H. F., & Ge, X. J. (2012). Phylogeographic analysis and environmental niche modeling of widespread shrub Rhododendron simsii in China reveals multiple glacial refugia during the last glacial maximum. Journal of Systematics and Evolution, 50, 362–373.

    Article  Google Scholar 

  • Liu, M. H. (2008). Phylogeography of Fagus longipetiolata: insights from nuclear DNA microsatellites and chloroplast DNA variation. Shanghai: East China Normal University, PhD thesis.

  • Magallón, S., Crane, P. R., & Herendeen, P. S. (2001). Androdecidua endressii, gen. et sp nov., from the Late Cretaceous of Georgia (United States): further floral diversity in Hamamelidoideae (Hamamelidaceae). International Journal of Plant Sciences, 162, 963–983.

    Article  Google Scholar 

  • McLachlan, J. S., Clark, J. S., & Manos, P. S. (2005). Molecular indicators of tree migration capacity under rapid climate change. Evolution, 86, 2088–2098.

    Google Scholar 

  • Moog, U., Fiala, B., Federle, W., & Maschwitz, U. (2002). Thrips pollination of the dioecious ant plant Macaranga hullettii (Euphorbiaceae) in Southeast Asia. American Journal of Botany, 89, 50–59.

    Article  PubMed  Google Scholar 

  • Myers, N., Mittermeier, R. A., Mittermeier, C. G., de Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspot for conservation priorities. Nature, 403, 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.

    Google Scholar 

  • Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. New York: Oxford University Press.

    Google Scholar 

  • Ni, J., Yu, G., Harrison, S. P., & Pretice, I. C. (2010). Palaeovegetaion in China during the late Quaternary: biome reconstructions based on a global scheme of plant functionally types. Palaeogeoraphy, Palaeoclimatology, Palaeoecology, 289, 44–61.

    Article  Google Scholar 

  • Peakall, R., & Smouse, P. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.

    Article  Google Scholar 

  • Pearson, R. G. (2007). Species’ distribution modeling for conservation educators and practitioners. American Museum of Natural History, Synthesis. Available at http://ncep.amnh.org

  • Peñalver, E., Labandeira, C. C., Barrón, E., Delclòs, X., Nel, P., Nel, A., Tafforeau, P., & Soriano, C. (2012). Thrips pollination of Mesozoic gymnosperms. Proceedings of the National Academy of Sciences of the United States of America, 109, 8623–8628.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson, A. T. (2003). Predicting the geography of species’ invasions via ecological niche modelling. The Quarterly Review of Biology, 78, 419–433.

    Article  PubMed  Google Scholar 

  • Petit, R. J., Auinagalde, I., de Beaulieu, J. L., Bittkau, C., & Brewer, S. (2003). Glacial refugia: hotspots but not melting pots of genetic diversity. Science, 300, 1563–1565.

    Article  CAS  PubMed  Google Scholar 

  • Petit, R. J., Hu, F. S., & Dick, C. W. (2008). Forests of the past: a window to future changes. Science, 320(5882), 1450–1452.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  • Posada, D., & Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qi, X. S., Chen, C., Comes, H. P., Sakaguchi, S., Liu, Y. H., Tanaka, N., Sakio, H., & Qiu, Y. X. (2012). Molecular data and ecological niche modelling reveal a highly dynamic evolutionary history of the East Asian Tertiary relict Cercidiphyllum (Percidiphyllaceae). New Phytologist, 196, 617–630.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, Y. X., Fu, C. X., & Comes, H. P. (2011). Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59, 225–244.

    Article  PubMed  Google Scholar 

  • Radtke, M. G., Pigg, K. B., & Wehr, W. C. (2005). Fossil Corylopsis and Fothergilla leaves (Hamamelidaceae) from the Lower Eocene Xora of Republic, Washington, USA, and their evolutionary and biogeographic significance. International Journal of Plant Sciences, 166, 347–356.

    Article  Google Scholar 

  • Rambaut, A., Drummond, A. J. (2009). Tracer: MCMC trace analysis tool. 1.4.1 edition. (http://tree.bio.ed.ac.uk/software/tracer/). Institute of Evolutionary Biology, University of Edinburgh.

  • Ray, N., & Adams, J. M. (2001). A GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP). Internet Archaeology, 11.

  • Richmond, O. M. W., McEntee, J. P., Hijmans, R. J., & Brashares, J. S. (2010). Is the climate right for Pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents. PLoS ONE, 5, e12899.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers, A. (1995). Genetic evidence for a Pleistocene population explosion. Evolution, 49, 608–618.

    Article  Google Scholar 

  • Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569.

    CAS  PubMed  Google Scholar 

  • Rosenberg, N. A. (2004). Distruct: a program for the graphical display of population structure. Molecular Ecology Notes, 4, 137–138.

    Article  Google Scholar 

  • Sakai, S. (2001). Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest. American Journal of Botany, 88, 1527–1534.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, S., & Excoffier, L. (1999). Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics, 152, 1079–1089.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd, L. D., Perrie, L. R., & Brownsey, P. J. (2007). Fire and ice: volcanic and glacial impacts on the phylogeography of the New Zealand forest fern Asplenium hookerianum. Molecular Ecology, 16, 4536–4549.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y. F., Cui, Z. J., & Su, Z. (2006). The Quaternary glaciation and environmental variations in China. Hebei: Hebei Science and Technology Publishing House.

    Google Scholar 

  • SoberÓn, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10.

    Article  Google Scholar 

  • Sun, X. J., Song, C. Q., & Chen, X. D. (1999). China Quaternary pollen database (CPD) and Biome 6000 project. Advance in Earth Sciences, 8, 407–411.

    Google Scholar 

  • Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17, 1105–1109.

    Article  CAS  PubMed  Google Scholar 

  • Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453–464.

    Article  CAS  PubMed  Google Scholar 

  • Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima, F. (1993). Measurement of DNA polymorphism. In N. Takahata & A. G. Clark (Eds.), Mechanisms of molecular evolution (pp. 37–59). Sunderland: Sinauer Associates Inc.

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Tang, T., Zhong, Y., Jian, S. G., & Shi, S. H. (2003). Genetic diversity of Hibiscus tiliaceus (Malvaceae) in China assessed using AFLP markers. Annals of Botany, 92, 409–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, S., Luo, L. C., Ge, S., & Zhang, Z. Y. (2008). Clear genetic structure of Pinus kwangtungensis (Pinaceae) revealed by a plastid DNA fragment with a novel minisatellite. Annals of Botany, 102, 69–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, S., López-Pujol, J., Wang, H., Ge, S., & Zhang, Z. Y. (2010). Molecular evidence for glacial expansion and interglacial retreat during Quaternary climatic changes in a montane temperate pine (Pinus kwangtungensis Chun ex Tsiang) in southern China. Plant Systematics and Evolution, 284, 219–229.

    Article  CAS  Google Scholar 

  • Tian, S., Lei, S. Q., Hua, W., Deng, L. L., Li, B., Meng, Q. L., et al. (2015). Repeated range expansions and inter-/postglacial recolonization routes of Sargentodoxa cuneata (Oliv.) Rehd. et Wils. (Lardizabalaceae) in subtropical China revealed by chloroplast phylogeography. Molecular Phylogenetics and Evolution, 85, 238–246.

    Article  PubMed  Google Scholar 

  • Vigouroux, Y., Glaubitz, J. C., Matsuoka, Y., Goodman, M. M., Sánchez, J. G., & Doebley, J. (2008). Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. American Journal of Botany, 95, 1240–1253.

    Article  PubMed  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waltari, E., Hijmans, R. J., Peterson, A. T., Nyári, Á. S., Perkins, S. L., & Guralnick, R. P. (2007). Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS One, 2, e563.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, W. C. (1992a). On some distribution patterns and some migration routes found in the eastern Asiatic region. Acta Phytotaxonomica Sinica, 30, 1–24.

    CAS  Google Scholar 

  • Wang, W. C. (1992b). On some distribution patterns and some migration routes found in the eastern Asiatic region. Acta Phytotaxonomica Sinica, 30, 97–117.

    Google Scholar 

  • Wang, H. W., & Ge, S. (2006). Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Molecular Ecology, 15, 4109–4122.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Z. Y., & Wang, Y. L. (1994). The biodiversity and characters of spermatophytic genera endemic to China. Acta Botanica Yunnanica, 16, 209–220.

    Google Scholar 

  • Wang, J., Gao, P. X., Kang, M., Andrew, J. L., & Huang, H. W. (2009). Refugia within refugia: the case study of a canopy tree (Eurycorymbus cavaleriei) in subtropical China. Journal of Biogeography, 36, 2156–2164.

    Article  Google Scholar 

  • Xiao, J. Y., Lu, H. B., Zhou, W. J., Zhao, Z. J., & Hao, R. H. (2007). Evolution of vegetation and climate since the last glacial maximum recorded at Dahu peat site, south China. Science in China Series D: Earth Sciences, 50, 1209–1217.

    Article  Google Scholar 

  • Xu, J., Deng, M., Jiang, X. L., Westwood, M., Song, Y. G., & Turkington, R. (2014). Phylogeography of Quercus glauca (Fagaceae), a dominant tree of East Asian subtropical evergreen forests, based on three chloroplast DNA interspace sequences. Tree Genetics & Genomes, 11, 1–17.

    Article  CAS  Google Scholar 

  • Ying, T. S. (2001). Species diversity and distribution pattern of seed plants in China. Biodiversity Science, 9, 393–398.

    Google Scholar 

  • Zheng, Z. (2000). Late Quaternary vegetational and climatic changes in the tropical and subtropical areas of China. Acta Micropalaeontologica Sinica, 17, 125–146.

    Google Scholar 

Download references

Acknowledgments

This project was supported by the National Science Foundation of China (31300174; 31470312) and the Doctoral Program of Higher Education Research Fund New Teacher Class Jointly Funded Project. We are indebted to Dr. Atsushi Kawakita (Kyoto University, Japan) and Dr. Hanghui Kong, Bo Li, Mr. Xiangxu Huang, Mr. Binghui Chen, and Mr. Lianxuan Zhou (South China Botanical Garden, CAS) for collecting samples and/or assistance in the field and Dr. Tieyao Tu (South China Botanical Garden, CAS) for data analysis. Special thanks go to the various members of the Department of Biodiversity and Plant Systematics at COS Heidelberg, in particular Dr. Markus Kiefer, Dr. Juraj Paule, and Dr. Roswitha Schmickl for providing substantial support while establishing and running the AFLP experiments. Prof. Peter Del Tredici (The Arnold Arboretum of Harvard University) helped in linguistic corrections, which is greatly acknowledged here.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcus A. Koch or Dianxiang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 17967 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, W., Liu, W., Gu, L. et al. From glacial refugia to wide distribution range: demographic expansion of Loropetalum chinense (Hamamelidaceae) in Chinese subtropical evergreen broadleaved forest. Org Divers Evol 16, 23–38 (2016). https://doi.org/10.1007/s13127-015-0252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0252-4

Keywords

Navigation