Skip to main content

Advertisement

Log in

First comprehensive multi-tissue transcriptome of Cherax quadricarinatus (Decapoda: Parastacidae) reveals unexpected diversity of endogenous cellulase

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The Australian freshwater crayfish species, Cherax quadricarinatus Von Martens, 1868, is an important commercial and invasive species that is also being increasingly used as a model organism to address important and interesting questions in crustacean biology. Through deep sequencing of the transcriptome of C. quadricarinatus from the hepatopancreas and four other tissues, we examine the evolution of endogenously transcribed cellulase genes and provide new insights into controversial issues regarding the nutritional biology of crayfishes. A cluster assembly approach yielded one of the highest quality transcriptome assemblies for a decapod crustacean to date. A total of 206,341,872 reads with an average read length of 80 bp were generated from sequencing the transcriptomes from the heart, kidney, hepatopancreas, nerve, and testis tissues. The assembled transcriptome contains a total of 44,525 transcripts. A total of 65 transcripts coding for carbohydrate-active enzymes (CAZy) were identified based on hidden Markov model (HMM), and a majority of them display high relative transcript abundance in the hepatopancreas tissue, supporting their role in nutrient digestion. Comprehensive phylogenetic analyses of proteins belonging to two main glycosyl hydrolase families (GH9 and GH5) suggest shared ancestry of C. quadricarinatus cellulases with other characterized crustacean cellulases. Our study significantly expands the number of known crustacean-derived CAZy-coding transcripts. More importantly, the surprising level of evolutionary diversification of these proteins in C. quadricarinatus suggests that these enzymes may have been of critical importance in the adaptation of freshwater crayfishes to new plant-based food sources as part of their successful invasion of freshwater systems from marine ancestors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdu, U., Davis, C., Khalaila, I., & Sagi, A. (2002). The vitellogenin cDNA of Cherax quadricarinatus encodes a lipoprotein with calcium binding ability, and its expression is induced following the removal of the androgenic gland in a sexually plastic system. General and Comparative Endocrinology, 127(3), 263–272. doi:10.1016/S0016-6480(02)00053-9.

    Article  CAS  PubMed  Google Scholar 

  • Ahyong, S., & Yeo, D. J. (2007). Feral populations of the Australian Red-Claw crayfish (Cherax quadricarinatus von Martens) in water supply catchments of Singapore. Biological Invasions, 9(8), 943–946. doi:10.1007/s10530-007-9094-0.

    Article  Google Scholar 

  • Akashi, H., & Eyre-Walker, A. (1998). Translational selection and molecular evolution. Current Opinion in Genetics & Development, 8(6), 688–693. doi:10.1016/S0959-437X(98)80038-5.

    Article  CAS  Google Scholar 

  • Alföldi, J., & Lindblad-Toh, K. (2013). Comparative genomics as a tool to understand evolution and disease. Genome Research, 23(7), 1063–1068.

    Article  PubMed  PubMed Central  Google Scholar 

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. doi:10.1016/S0022-2836(05)80360-2.

    Article  CAS  PubMed  Google Scholar 

  • Amemiya, C. T., Alfoldi, J., Lee, A. P., Fan, S., Philippe, H., MacCallum, I., et al. (2013). The African coelacanth genome provides insights into tetrapod evolution. [Article]. Nature, 496(7445), 311–316. doi:10.1038/nature12027. http://www.nature.com/nature/journal/v496/n7445/abs/nature12027.html#supplementary-information .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aspeborg, H., Coutinho, P., Wang, Y., Brumer, H., & Henrissat, B. (2012). Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5). BMC Evolutionary Biology, 12(1), 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin, C. (1996). Systematics of the freshwater crayfish genus Cherax Erichson (Decapoda: Parastacidae) in Northern and Eastern Australia: electrophoretic and morphological variation. Australian Journal of Zoology, 44(3), 259–296. doi:10.1071/ZO9960259.

    Article  CAS  Google Scholar 

  • Austin, C., & Knott, B. (1996). Systematics of the freshwater crayfish genus Cherax Erichson (Decapoda: Parastacidae) in South-Western Australia: electrophoretic, morphological and habitat variation. Australian Journal of Zoology, 44(3), 223–258. doi:10.1071/ZO9960223.

    Article  CAS  Google Scholar 

  • Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. doi:10.1093/bioinformatics/btu170.

    PubMed  PubMed Central  Google Scholar 

  • Bracken-Grissom, H. D., Ahyong, S. T., Wilkinson, R. D., Feldmann, R. M., Schweitzer, C. E., Breinholt, J. W., et al. (2014). The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheidea, Polychelida). Systematic Biology. doi:10.1093/sysbio/syu008.

    PubMed  Google Scholar 

  • Byrne, K. A., Lehnert, S. A., Johnson, S. E., & Moore, S. S. (1999). Isolation of a cDNA encoding a putative cellulase in the red claw crayfish Cherax quadricarinatus. Gene, 239(2), 317–324. doi:10.1016/S0378-1119(99)00396-0.

    Article  CAS  PubMed  Google Scholar 

  • Chen, R. (2015). A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature. Bioengineered. doi:10.1080/21655979.2014.1004019.

    PubMed Central  Google Scholar 

  • Chen, H., & Boutros, P. (2011). VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics, 12(1), 35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Clarke, T., Garb, J., Hayashi, C., Haney, R., Lancaster, A., Corbett, S., et al. (2014). Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics, 15(1), 365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Colbourne, J. K., Pfrender, M. E., Gilbert, D., Thomas, W. K., Tucker, A., Oakley, T. H., et al. (2011). The ecoresponsive genome of daphnia pulex. Science, 331(6017), 555–561. doi:10.1126/science.1197761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium, i. K. (2013). The i5K initiative: advancing arthropod genomics for knowledge, human health, agriculture, and the environment. Journal of Heredity, 104(5), 595–600. doi:10.1093/jhered/est050.

    Article  Google Scholar 

  • Crawford, A. C., Kricker, J. A., Anderson, A. J., Richardson, N. R., & Mather, P. B. (2004). Structure and function of a cellulase gene in redclaw crayfish, Cherax quadricarinatus. Gene, 340(2), 267–274. doi:10.1016/j.gene.2004.06.060.

    Article  CAS  PubMed  Google Scholar 

  • Criscuolo, A., & Gribaldo, S. (2010). BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evolutionary Biology, 10(1), 210.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dammannagoda, L. K., Pavasovic, A., Prentis, P. J., Hurwood, D. A., & Mather, P. B. (2015). Expression and characterization of digestive enzyme genes from hepatopancreatic transcripts from redclaw crayfish (Cherax quadricarinatus). Aquaculture Nutrition. doi:10.1111/anu.12211.

    Google Scholar 

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27(8), 1164–1165. doi:10.1093/bioinformatics/btr088.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, N., & Oshlack, A. (2014). Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biology, 15(7), 410.

    PubMed  PubMed Central  Google Scholar 

  • Davison, A., & Blaxter, M. (2005). Ancient origin of glycosyl hydrolase family 9 cellulase genes. Molecular Biology and Evolution, 22(5), 1273–1284. doi:10.1093/molbev/msi107.

    Article  CAS  PubMed  Google Scholar 

  • Eaton, D. A. R., & Ree, R. H. (2013). Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Systematic Biology, 62(5), 689–706. doi:10.1093/sysbio/syt032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, D., Wang, Q., Wang, J., He, L., Liu, L., & Wang, Y. (2011). A novel DDX5 gene in the freshwater crayfish Cherax quadricarinatus is highly expressed during ontogenesis and spermatogenesis. Genetics and Molecular Research, 10(4), 3963–3975.

    Article  PubMed  Google Scholar 

  • Fernández, M. S., Bustos, C., Luquet, G., Saez, D., Neira-Carrillo, A., Corneillat, M., et al. (2012). Proteoglycan occurrence in Gastrolith of the crayfish Cherax quadricarinatus (Malacostraca: Decapoda). Journal of Crustacean Biology, 32(5), 802–815. doi:10.1163/193724012x649804.

    Article  Google Scholar 

  • Fisher, S. G., & Likens, G. E. (1973). Energy flow in bear brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecological Monographs, 43(4), 421–439. doi:10.2307/1942301.

    Article  Google Scholar 

  • Gan, H. M., Tan, M. H., & Austin, C. M. (2014). The complete mitogenome of the red claw crayfish Cherax quadricarinatus (Von Martens, 1868) (Crustacea: Decapoda: Parastacidae). Mitochondrial DNA, 0(0), 1–2, doi:doi:10.3109/19401736.2014.895997.

  • Glazer, L., Tom, M., Weil, S., Roth, Z., Khalaila, I., Mittelman, B., et al. (2013). Hemocyanin with phenoloxidase activity in the chitin matrix of the crayfish gastrolith. The Journal of Experimental Biology, 216(10), 1898–1904. doi:10.1242/jeb.080945.

    Article  CAS  PubMed  Google Scholar 

  • Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. doi:10.1038/nbt.1883. http://www.nature.com/nbt/journal/v29/n7/abs/nbt.1883.html#supplementary-information .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5), 696–704. doi:10.1080/10635150390235520.

    Article  PubMed  Google Scholar 

  • Hayakijkosol, O., La Fauce, K., & Owens, L. (2011). Experimental infection of redclaw crayfish (Cherax quadricarinatus) with Macrobrachium rosenbergii nodavirus, the aetiological agent of white tail disease. Aquaculture, 319(1–2), 25–29. doi:10.1016/j.aquaculture.2011.06.023.

    Article  Google Scholar 

  • Hayward, A., Cornwallis, C. K., & Jern, P. (2015). Pan-vertebrate comparative genomics unmasks retrovirus macroevolution. Proceedings of the National Academy of Sciences, 112(2), 464–469. doi:10.1073/pnas.1414980112.

    Article  CAS  Google Scholar 

  • Huang, Q.-S., Yan, J.-H., Tang, J.-Y., Tao, Y.-M., Xie, X.-L., Wang, Y., et al. (2010). Cloning and tissue expressions of seven chitinase family genes in Litopenaeus vannamei. Fish & Shellfish Immunology, 29(1), 75–81. doi:10.1016/j.fsi.2010.02.014.

    Article  CAS  Google Scholar 

  • Huner, J. V. (1994). Freshwater crayfish aquaculture in North America, Europe, and Australia: Families Astacidae, Cambaridae, and Parastacidae. New York: Food products press.

    Google Scholar 

  • James, J., Slater, F. M., Vaughan, I. P., Young, K. A., & Cable, J. (2014). Comparing the ecological impacts of native and invasive crayfish: could native species’ translocation do more harm than good? Oecologia, 1–8, doi:10.1007/s00442-014-3195-0.

  • Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., et al. (2014). Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346(6215), 1320–1331. doi:10.1126/science.1253451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston, K., Robson, B. J., & Fairweather, P. G. (2011). Trophic positions of omnivores are not always flexible: evidence from four species of freshwater crayfish. Austral Ecology, 36(3), 269–279. doi:10.1111/j.1442-9993.2010.02147.x.

    Article  Google Scholar 

  • Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics, 30(9), 1236–1240. doi:10.1093/bioinformatics/btu031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. doi:10.1093/molbev/mst010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolde, R. (2012). pheatmap: Pretty heatmaps. R package version 0.6, 1.

  • Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. [Brief Communication]. Nature Methods, 9(4), 357–359. doi:10.1038/nmeth.1923. http://www.nature.com/nmeth/journal/v9/n4/abs/nmeth.1923.html#supplementary-information .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 10(3), R25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larson, E. R., & Olden, J. D. (2012). Using avatar species to model the potential distribution of emerging invaders. Global Ecology and Biogeography, 21(11), 1114–1125. doi:10.1111/j.1466-8238.2012.00758.x.

    Article  Google Scholar 

  • Li, B., & Dewey, C. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12(1), 323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, W., Jaroszewski, L., & Godzik, A. (2001). Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics, 17(3), 282–283. doi:10.1093/bioinformatics/17.3.282.

    Article  CAS  PubMed  Google Scholar 

  • Linton, S. M., Greenaway, P., & Towle, D. (2006). Endogenous production of endo-β-1,4-glucanase by decapod crustaceans. Journal of Comparative Physiology B, 176(4), 339–348. doi:10.1007/s00360-005-0056-5.

    Article  CAS  Google Scholar 

  • Linton, S. M., Cameron, M. S., Gray, M. C., Donald, J. A., Saborowski, R., von Bergen, M., et al. (2015). A glycosyl hydrolase family 16 gene is responsible for the endogenous production of β-1,3-glucanases within decapod crustaceans. Gene, 569(2), 203–217. doi:10.1016/j.gene.2015.05.056.

    Article  CAS  PubMed  Google Scholar 

  • Liu, H. P., Chen, R. Y., Zhang, Q. X., Peng, H., & Wang, K.-J. (2011). Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection. Developmental & Comparative Immunology, 35(7), 716–724. doi:10.1016/j.dci.2011.02.015.

    Article  CAS  Google Scholar 

  • Lodge, D. M., Deines, A., Gherardi, F., Yeo, D. C. J., Arcella, T., Baldridge, A. K., et al. (2012). Global introductions of crayfishes: evaluating the impact of species invasions on ecosystem services. Annual Review of Ecology, Evolution, and Systematics, 43(1), 449–472. doi:10.1146/annurev-ecolsys-111511-103919.

    Article  Google Scholar 

  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42(D1), D490–D495. doi:10.1093/nar/gkt1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv, J., Liu, P., Wang, Y., Gao, B., Chen, P., & Li, J. (2013). Transcriptome analysis of Portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation. PLoS ONE, 8(12), e82155. doi:10.1371/journal.pone.0082155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, H., Ma, C., Li, S., Jiang, W., Li, X., Liu, Y., et al. (2014). Transcriptome analysis of the mud crab (Scylla paramamosain) by 454 deep sequencing: assembly, annotation, and marker discovery. PLoS ONE, 9(7), e102668. doi:10.1371/journal.pone.0102668.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, A. J., Rich, T. H., Poore, G. C. B., Schultz, M. B., Austin, C. M., Kool, L., et al. (2008). Fossil evidence in Australia for oldest known freshwater crayfish of Gondwana. Gondwana Research, 14(3), 287–296. doi:10.1016/j.gr.2008.01.002.

    Article  Google Scholar 

  • McCormack, J. E., Harvey, M. G., Faircloth, B. C., Crawford, N. G., Glenn, T. C., & Brumfield, R. T. (2013). A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE, 8(1), e54848. doi:10.1371/journal.pone.0054848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell, B. D., Anderson, T., De Silva, S. S., Collins, R. O., Chavez, J. R., Jones, P. L., et al. (1995). A conceptual production model for freshwater crayfish pond culture incorporating detrital forage. Aquaculture Research, 26(2), 117–127. doi:10.1111/j.1365-2109.1995.tb00891.x.

    Article  Google Scholar 

  • Momot, W. T. (1995). Redefining the role of crayfish in aquatic ecosystems. Reviews in Fisheries Science, 3(1), 33–63. doi:10.1080/10641269509388566.

    Article  Google Scholar 

  • Muhire, B. M., Varsani, A., & Martin, D. P. (2014). SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS ONE, 9(9), e108277. doi:10.1371/journal.pone.0108277.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nguyen, K. Y., Sakuna, K., Kinobe, R., & Owens, L. (2014). Ivermectin blocks the nuclear location signal of parvoviruses in crayfish, Cherax quadricarinatus. Aquaculture, 420–421, 288–294. doi:10.1016/j.aquaculture.2013.11.022.

    Article  Google Scholar 

  • Nyström, P. E. R., Brönmark, C., & Granéli, W. (1996). Patterns in benthic food webs: a role for omnivorous crayfish? Freshwater Biology, 36(3), 631–646. doi:10.1046/j.1365-2427.1996.d01-528.x.

    Article  Google Scholar 

  • Oakley, T. H., Wolfe, J. M., Lindgren, A. R., & Zaharoff, A. K. (2013). Phylotranscriptomics to bring the understudied into the fold: monophyletic ostracoda, fossil placement, and pancrustacean phylogeny. Molecular Biology and Evolution, 30(1), 215–233. doi:10.1093/molbev/mss216.

    Article  CAS  PubMed  Google Scholar 

  • Ong, S.-S., Bhassu, S., Kwong, Q. B., Mather, P., Simarani, K., & Othman, R. Y. (2015). Identification of a putative cellulase gene in the giant freshwater prawn, Macrobrachium rosenbergii (De Man, 1879). Aquaculture Research. doi:10.1111/are.12818.

    Google Scholar 

  • Pallavicini, A., Canapa, A., Barucca, M., Alfoldi, J., Biscotti, M., Buonocore, F., et al. (2013). Analysis of the transcriptome of the Indonesian coelacanth Latimeria menadoensis. BMC Genomics, 14(1), 538.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pamuru, R. R., Rosen, O., Manor, R., Chung, J. S., Zmora, N., Glazer, L., et al. (2012). Stimulation of molt by RNA interference of the molt-inhibiting hormone in the crayfish Cherax quadricarinatus. General and Comparative Endocrinology, 178(2), 227–236. doi:10.1016/j.ygcen.2012.05.007.

    Article  CAS  PubMed  Google Scholar 

  • Parkyn, S. M., Collier, K. J., & Hicks, B. J. (2001). New Zealand stream crayfish: functional omnivores but trophic predators? Freshwater Biology, 46(5), 641–652. doi:10.1046/j.1365-2427.2001.00702.x.

    Article  Google Scholar 

  • Parra, G., Bradnam, K., & Korf, I. (2007). CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics, 23(9), 1061–1067. doi:10.1093/bioinformatics/btm071.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y., Leung, H. C. M., Yiu, S.-M., Lv, M.-J., Zhu, X.-G., & Chin, F. Y. L. (2013). IDBA-tran: a more robust de novo de Bruijn graph assembler for transcriptomes with uneven expression levels. Bioinformatics, 29(13), i326–i334. doi:10.1093/bioinformatics/btt219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter, M. L., Pérez-Losada, M., & Crandall, K. A. (2005). Model-based multi-locus estimation of decapod phylogeny and divergence times. Molecular Phylogenetics and Evolution, 37(2), 355–369. doi:10.1016/j.ympev.2005.06.021.

    Article  CAS  PubMed  Google Scholar 

  • Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE, 5(3), e9490. doi:10.1371/journal.pone.0009490.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richman, N. I., Böhm, M., Adams, S. B., Alvarez, F., Bergey, E. A., Bunn, J. J. S., et al. (2015). Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philosophical Transactions of the Royal Society, B: Biological Sciences, 370(1662), 20140060. doi:10.1098/rstb.2014.0060.

    Article  PubMed Central  Google Scholar 

  • Roth, B. M., Hein, C. L., & Vander Zanden, M. J. (2006). Using bioenergetics and stable isotopes to assess the trophic role of rusty crayfish (Orconectes rusticus) in lake littoral zones. Canadian Journal of Fisheries and Aquatic Sciences, 63(2), 335–344. doi:10.1139/f05-217.

    Article  Google Scholar 

  • Rubin, C.-J., Megens, H.-J., Barrio, A. M., Maqbool, K., Sayyab, S., Schwochow, D., et al. (2012). Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences, 109(48), 19529–19536. doi:10.1073/pnas.1217149109.

    Article  CAS  Google Scholar 

  • Sagi, A., & Khalaila, I. (2001). The Crustacean androgen: a hormone in an isopod and androgenic activity in decapods. American Zoologist, 41(3), 477–484. doi:10.1093/icb/41.3.477.

    CAS  Google Scholar 

  • Sahoo, P. K., Kar, B., Mohapatra, A., & Mohanty, J. (2013). De novo whole transcriptome analysis of the fish louse, Argulus siamensis: first molecular insights into characterization of Toll downstream signalling molecules of crustaceans. Experimental Parasitology, 135(3), 629–641. doi:10.1016/j.exppara.2013.09.018.

    Article  CAS  PubMed  Google Scholar 

  • Salame, M. J., & Rouse, D. B. (2000). Forage-based feeding in commercial red claw ponds in Ecuador. Journal of Applied Aquaculture, 10(3), 83–90. doi:10.1300/J028v10n03_07.

    Article  Google Scholar 

  • Saoud, I. P., Ghanawi, J., Thompson, K. R., & Webster, C. D. (2013). A review of the culture and diseases of Redclaw crayfish Cherax quadricarinatus (Von Martens 1868). Journal of the World Aquaculture Society, 44(1), 1–29. doi:10.1111/jwas.12011.

    Article  Google Scholar 

  • Scientists G. C.o. (2014). The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. Journal of Heredity, 105(1), 1–18. doi:10.1093/jhered/est084.

    Article  Google Scholar 

  • Shechter, A., Aflalo, E. D., Davis, C., & Sagi, A. (2005). Expression of the reproductive female-specific vitellogenin gene in endocrinologically induced male and intersex Cherax quadricarinatus crayfish. Biology of Reproduction, 73(1), 72–79. doi:10.1095/biolreprod.104.038554.

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688–2690. doi:10.1093/bioinformatics/btl446.

    Article  CAS  PubMed  Google Scholar 

  • Tan, S. H., Degnan, B. M., & Lehnert, S. A. (2000). The Penaeus monodon Chitinase 1 gene is differentially expressed in the Hepatopancreas during the molt cycle. Marine Biotechnology, 2(2), 126–135. doi:10.1007/s101269900016.

    CAS  PubMed  Google Scholar 

  • Tank, J. L., Rosi-Marshall, E. J., Griffiths, N. A., Entrekin, S. A., & Stephen, M. L. (2010). A review of allochthonous organic matter dynamics and metabolism in streams. Journal of the North American Benthological Society, 29(1), 118–146. doi:10.1899/08-170.1.

    Article  Google Scholar 

  • Toon, A., Pérez-Losada, M., Schweitzer, C. E., Feldmann, R. M., Carlson, M., & Crandall, K. A. (2010). Gondwanan radiation of the Southern Hemisphere crayfishes (Decapoda: Parastacidae): evidence from fossils and molecules. Journal of Biogeography, 37(12), 2275–2290. doi:10.1111/j.1365-2699.2010.02374.x.

    Article  Google Scholar 

  • Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37(1), 130–137. doi:10.1139/f80-017.

    Article  Google Scholar 

  • Ward, L. D., & Kellis, M. (2012). Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science, 337(6102), 1675–1678. doi:10.1126/science.1225057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinländer, M., & Füreder, L. (2011). Crayfish as trophic agents: effect of Austropotamobius torrentium on zoobenthos structure and function in small forest streams. Knowledge and Management of Aquatic Ecosystems, 401.

  • Whitledge, G. W., & Rabeni, C. F. (1997). Energy sources and ecological role of crayfishes in an Ozark stream: insights from stable isotopes and gut analysis. Canadian Journal of Fisheries and Aquatic Sciences, 54(11), 2555–2563. doi:10.1139/f97-173.

    Article  Google Scholar 

  • Yang, Y., & Smith, S. A. (2014). Orthology inference in non-model organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics. Molecular Biology and Evolution. doi:10.1093/molbev/msu245.

    Google Scholar 

  • Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., & Xu, Y. (2012). dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Research, 40(Web Server issue), W445–W451. doi:10.1093/nar/gks479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You, X., Bian, C., Zan, Q., Xu, X., Liu, X., Chen, J., et al. (2014). Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes. [Article]. Nat Commun, 5, doi:10.1038/ncomms6594.

  • Yudkovski, Y., Glazer, L., Shechter, A., Reinhardt, R., Chalifa-Caspi, V., Sagi, A., et al. (2010). Multi-transcript expression patterns in the gastrolith disk and the hypodermis of the crayfish Cherax quadricarinatus at premolt. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 5(2), 171–177. doi:10.1016/j.cbd.2010.03.010.

    Google Scholar 

  • Zhang, S., Jiang, S., Xiong, Y., Fu, H., Sun, S., Qiao, H., et al. (2014). Six chitinases from oriental river prawn Macrobrachium nipponense: cDNA characterization, classification and mRNA expression during post-embryonic development and moulting cycle. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 167, 30–40. doi:10.1016/j.cbpb.2013.09.009.

    Article  CAS  Google Scholar 

  • Zhernakova, A., Elbers, C. C., Ferwerda, B., Romanos, J., Trynka, G., Dubois, P. C., et al. (2010). Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. The American Journal of Human Genetics, 86(6), 970–977. doi:10.1016/j.ajhg.2010.05.004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Monash University Malaysia (MUM) Tropical Medicine and Biology Multidisciplinary Platform.

Conflict of interest

The authors declare that they have no conflict of interest.

Authors’ contributions

HMG and CMA conceived and designed the study. HMG, HYG, and YPL performed the sequencing of transcriptomes, and MHT analyzed the data. MHT, HMG, CMA, LJC, MBS, and ADM discussed the results and wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Ming Gan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(XLSX 2529 kb)

Online Resource 2

(FASTA 70569 kb)

Online Resource 3

(XLSX 45 kb)

Online Resource 4

(FASTA 37 kb)

Online Resource 5

(TXT 35 kb)

Online Resource 6

(PDF 105 kb)

Online Resource 7

(TXT 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M.H., Gan, H.M., Gan, H.Y. et al. First comprehensive multi-tissue transcriptome of Cherax quadricarinatus (Decapoda: Parastacidae) reveals unexpected diversity of endogenous cellulase. Org Divers Evol 16, 185–200 (2016). https://doi.org/10.1007/s13127-015-0237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0237-3

Keywords

Navigation