Skip to main content
Log in

Tachypleus syriacus (Woodward)—a sexually dimorphic Cretaceous crown limulid reveals underestimated horseshoe crab divergence times

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The fossil record represents an important test to molecular divergence estimates, with known occurrences representing minimum divergence times for sister taxa. As such, accurately placing fossils in phylogenies is integral to understanding the patterns and processes that shape the tree of life. The chelicerate order Xiphosura comprises classic archetypes of morphological stasis, with the earliest known Ordovician representatives exhibiting all key morphological characteristics of the group. Molecular studies on the four extant species consistently retrieve a basal split between Limulinae and Tachypleinae, but conflict regarding the relationships of the three Asian species. Molecular divergence estimates using either no or a single fossil calibration point infer a Cretaceous or Palaeogene origin for Limulidae and a Palaeogene or Neogene origin for Tachypleinae and Tachypleus. Here, we present male and female specimens of Tachypleus syriacus (=‘Mesolimulussyriacus) from the Cretaceous of Lebanon, revealing an anterior scalloped carapace margin in males—a derived condition of sexual dimorphism shared with Tachypleus tridentatus. Morphological phylogenetic analysis of total group Limulidae retrieves a monophyletic Tachypleus with a minimum divergence time during the Cretaceous, while crown-group Tachypleinae and Limulidae are both present during the Triassic, showing that molecular clock analyses have significantly underestimated the divergence times for these taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson, F. E., & Swofford, D. L. (2004). Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Molecular Phylogenetics and Evolution, 33, 440–451.

    Article  CAS  PubMed  Google Scholar 

  • Avise, J. C., Nelson, W. S., & Sugita, H. (1994). A speciational history of “living fossils”: molecular evolutionary patterns in horseshoe crabs. Evolution, 48, 1986–2001.

    Article  Google Scholar 

  • Babcock, L. E., Merriam, D. F., & West, R. R. (2000). Paleolimulus, an early limuline (Xiphosurida), from Pennsylvanian–Permian Lagerstätten of Kansas and taphonomic comparison with modern Limulus. Lethaia, 33, 129–141.

    Article  Google Scholar 

  • Baker, A. J., González, P. M., Piersma, T., Niles, L. J., de Lima Serrano do Nascimento, I., Atkinson, P. W., Clark, N. A., Minton, C. D. T., Peck, M. K., & Aarts, G. (2004). Rapid population decline in red knots: fitness consequences of decreased refuelling rates and late arrival in Delaware Bay. Proceedings of the Royal Society B, 271, 875–882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnett, R., Barnes, I., Phillips, M. J., Martin, L. D., Harington, C. R., Leonard, J. A., & Cooper, A. (2005). Evolution of the extinct Sabretooths and the American Cheetahlike cat. Current Biology, 15, 589–590.

    Article  Google Scholar 

  • Benton, M. J., Donoghue, P. C. J., & Asher, J. (2009). Calibrating and constraining molecular clocks. In S. B. Hedges & S. Kumar (Eds.), The timetree of life (pp. 35–86). Oxford: Oxford University Press.

    Google Scholar 

  • Bergsten, J. (2005). A review of long-branch attraction. Cladistics, 21, 163–193.

    Article  Google Scholar 

  • Bleicher, M. (1897). Sur la découverte d’une nouvelle espèce de limule dans les marnes irisées de Lorraine. Bulletin de la Societe des Sciences de Nancy, 14, 116–126.

    Google Scholar 

  • Botton, M. L., & Ropes, J. W. (1987). The horseshoe crab, Limulus polyphemus, fishery and resource in the United States. Marine Fisheries Review, 49, 57–61.

    Google Scholar 

  • Botton, M. L., Shuster, C. N., Jr., Sekiguchi, K., & Sugita, H. (1996). Amplexus and mating behavior in the Japanese horseshoe crab, Tachypleus tridentatus. Zoological Science, 13, 151–159.

    Article  Google Scholar 

  • Briggs, D. E. G., & Wilby, P. R. (1996). The role of the calcium carbonate/calcium phosphate switch in the mineralization of soft-bodied fossils. Journal of the Geological Society of London, 153, 665–668.

    Article  CAS  Google Scholar 

  • Briggs, D. E. G., Moore, R. A., Shultz, J. W., & Schweigert, G. (2005). Mineralization of soft-part anatomy and invading microbes in the horseshoe crab Mesolimulus from the Upper Jurassic Lagerstätte of Nusplingen, Germany. Proceedings of the Royal Society B, 272, 627–632.

    Article  PubMed  PubMed Central  Google Scholar 

  • Campione, N., Brink, K. S., Freedman, E. A., McGarrity, C. T., & Evans, D. C. (2013). ‘Glishades ericksoni’, an inderterminate juvenile hadrosaurid from the two medicine formation of Montana: implications for hadrosauroid diversity in the latest Cretaceous (Campanian-Maastrichtian) of western North America. Palaeobiodiversity and Paleoenvironments, 93, 65–75.

    Google Scholar 

  • Capasso, L., Abi Saad, P., & Taverne, L. (2009). Nursallia tethyensis sp. nov., a new pycnodont fish (Neopterygii: †Halecostomi) from the Cenomanian of Lebanon. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique: Sciences de la Terre, 79, 117–136.

    Google Scholar 

  • Dalla Vecchia, F. M., Arduini, P., & Kellner, A. W. A. (2001). The first pterosaur from the Cenomanian (Late Cretaceous) Lagerstätten of Lebanon. Cretaceous Research, 22, 219–225.

    Article  Google Scholar 

  • Dalla Vecchia, F. M., Venturini Eni-Gap, S., & Tentor, M. (2002). The Cenomanian (Late Cretaceous) Konservat-Lagerstätte of en Nammoûra (Kesrouâne Province), northern Lebanon. Bolletino della Società Paleontologica Italiana, 41, 51–68.

    Google Scholar 

  • Dana, J. (1852). Crustacea, pt. I. United States exploring expedition during the years 1838, 1839, 1840, 1841, 1942. Under the command of Charles Wilkes, U.S.N.C. 13 (pp. 1–685). Philadelphia: Sherman.

    Google Scholar 

  • Diedrich, C. G. (2011). Middle Triassic horseshoe crab reproduction areas on intertidal flats of Europe with evidence of predation by archosaurs. Biological Journal of the Linnean Society, 103, 76–105.

    Article  Google Scholar 

  • Donoghue, P. C. J., & Benton, M. J. (2007). Rocks and clocks: calibrating the tree of life using fossils and molecules. Trends in Ecology and Evolution, 22, 424–431.

    Article  PubMed  Google Scholar 

  • Faurby, S., King, T. L., Obst, M., Hallerman, E. M., Pertoldi, C., & Funch, P. (2010). Population dynamics of American horseshoe crabs—historic climatic events and recent anthropogenic pressures. Molecular Ecology, 19, 3088–3100.

    Article  PubMed  Google Scholar 

  • Feldmann, R. M., Schweitzer, C. E., Dattilo, B., & Farlow, J. O. (2011). Remarkable preservation of a new genus and species of limuline horseshoe crab from the Cretaceous of Texas, USA. Palaeontology, 54, 1337–1346.

    Article  Google Scholar 

  • Fisher, D. C. (1984). The Xiphosurida: archetypes of Bradytely? In N. I. Eldredge & S. M. Stanley (Eds.), Living fossils (pp. 196–213). New York: Springer.

    Chapter  Google Scholar 

  • Garwood, R. J., Sharma, P. P., Dunlop, J. A., & Giribet, G. (2014). A Paleozoic stem group to mite harvestmen revealed through integration of phylogenetics and development. Current Biology, 24, 1017–1023.

    Article  CAS  PubMed  Google Scholar 

  • Giribet, G., Edgecombe, G. D., & Wheeler, W. C. (2001). Arthropod phylogeny based on eight molecular loci and morphology. Nature, 413, 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Goloboff, P. A., Farris, J. A., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.

    Article  Google Scholar 

  • Haug, C., Van Roy, P., Leipner, A., Funch, P., Rudkin, D. M., Schöllmann, L., & Haug, J. T. (2012). A holomorph approach to xiphosuran evolution—a case study on the ontogeny of Euproops. Development Genes and Evolution, 222, 253–268.

    Article  PubMed  Google Scholar 

  • Hauschke, N., & Wilde, V. (2004). Palaeogene limulids (Xiphosura) from Saxony-Anhalt (Germany)—systematics and palaeobiogeography. Hallesches Jahrbuch für Geowissenschaften Reihe B, 18, 161–168.

    Google Scholar 

  • Hughes, N. C., & Fortey, R. A. (1995). Sexual dimorphism in trilobites, with an Ordovician case study. In J. Cooper, M. L. Droser, & S. C. Finney (Eds.), Ordovician Odyssey (pp. 419–421). Los Angeles: SEPM Pacific Section.

    Google Scholar 

  • Jattiot, R., Brayard, A., Fara, E., & Charbonnier, S. (2015). Gladius-bearing coleoids from the upper cretaceous Lebanese Lagerstätten: diversity, morphology, and phylogenetic implications. Journal of Paleontology, 89, 148–167.

    Article  Google Scholar 

  • Kamaruzzaman, B. Y., Akbar John, B., Zaleha, K., & Jalal, K. C. A. (2011). Molecular phylogeny of horseshoe crab. Asian Journal of Biotechnology, 3, 302–309.

    Article  Google Scholar 

  • Karpanty, S. M., Fraser, J. D., Berkson, J., Niles, L. J., Dey, A., & Smith, E. P. (2006). Horseshoe crab eggs determine red knot distribution in Delaware Bay. Journal of Wildlife Management, 70, 1704–1710.

    Article  Google Scholar 

  • Kin, A., & Błażejowski, B. (2014). The horseshoe crab of the genus Limulus: living fossil or stabilomorph? PLoS ONE, 9, 1–11.

    Article  Google Scholar 

  • Lamsdell, J. C. (2013). Revised systematics of Palaeozoic ‘horseshoe crabs’ and the myth of monophyletic Xiphosura. Zoological Journal of the Linnean Society, 167, 1–27.

    Article  Google Scholar 

  • Lamsdell, J. C., & Selden, P. A. (2013). Babes in the wood—a unique window into sea scorpion ontogeny. BMC Evolutionary Biology, 13(98), 1–46.

    Google Scholar 

  • Lankester, E. R. (1881). Limulus an arachnid. Quarterly Journal of Microscopical Science, 21, 504–548.

    Google Scholar 

  • Latreille, P. (1802). Histoire naturelle, générale et particulière, des Crustacés et des Insectes (Vol. 3, pp. 1–467). Paris: Dufart.

    Google Scholar 

  • Leach, W. (1819). Entomostracés. In Levrault, F. (ed.), Dictionnaires des Sciences Naturelles, volume 14 (pp. 524–543). Paris.

  • Longrich, N., Vinther, J., Pyron, R. A., Pisani, D., & Gauthier, J. A. (2015). Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction. Proceedings of the Royal Society B, 282(20143034), 1–10.

    Google Scholar 

  • Loveland, R. E., & Botton, M. L. (1992). Size dimorphism and mating system in horseshoe crabs, Limulus polyphemus L. Animal Behavior, 44, 907–916.

    Article  Google Scholar 

  • Mishra, J. K. (2009). Horseshoe crabs, their eco-biological status along the northeast coast of India and the necessity for ecological conservation, In: Tancredi, J. T., Botton, M. L., Smith, D. (eds.), Biology and conservation of horseshoe crabs (pp. 89–96). Springer.

  • Müller, O. (1785). Entemostraca, seu, Insecta testacea quae in aquis Daniae et Norvegie reperit, descripsit et iconibus illustravit (pp. 1–134). Thiele, Hauniae.

  • Niles, L. J., Bart, J., Sitters, H. P., Dey, A. D., Clark, K. E., Atkinson, P. W., Baker, A. J., Bennett, K. A., Kalasz, K. S., Clark, N. A., Clark, J., Gillings, S., Gates, A. S., González, P. M., Hernandez, D. E., Minton, C. D. T., Morrison, R. I., Porter, R. R., Ross, R. K., & Veitch, C. R. (2009). Effects of horseshoe crab harvest in Delaware Bay on red knots: are harvest restrictions working? Bioscience, 59, 153–164.

    Article  Google Scholar 

  • Obst, M., Faurby, S., Bussarawit, S., & Funch, P. (2012). Molecular phylogeny of extant horseshoe crabs (Xiphosura, Limulidae) indicates Paleogene diversification of Asian species. Molecular Phylogenetics and Evolution, 62, 21–26.

    Article  PubMed  Google Scholar 

  • Philippe, H., Zhou, Y., Brinkmann, H., Rodrigue, N., & Delsuc, F. (2005). Heterotachy and long-branch attraction in phylogenetics. BMC Evolutionary Biology, 5(50), 1–8.

    Google Scholar 

  • Pocock, R. (1902). The taxonomy of recent species of Limulus. Journal of Natural History, 9, 256–266.

    Article  Google Scholar 

  • Reeside, J. B., & Harris, D. V. (1952). A cretaceous horseshoe crab from Colorado. Journal of the Washington Academy of Science, 42, 174–178.

    Google Scholar 

  • Renwick, G. (1968). Limulus polyphemus—living fossil in the laboratory. The American Biology Teacher, 30, 408–411.

    Article  Google Scholar 

  • Richter, R., & Richter, E. (1929). Weinbergina opitzi n. g., n. sp., ein Schwertträger (Merost. Xiphos.) aus dem Devon (Rheinland). Senckenbergiana, 11, 21–39.

    Google Scholar 

  • Riek, E. F., & Gill, E. D. (1971). A new xiphosuran genus from lower cretaceous freshwater sediments at Koonwarra, Victoria, Australia. Palaeontology, 14, 206–210.

    Google Scholar 

  • Seney, E. E., & Musick, J. A. (2007). Historical diet analysis of loggerhead sea turtles (Caretta caretta) in Virginia. Copeia, 2007, 478–489.

    Article  Google Scholar 

  • Shin, P. K. S., Li, H.-Y., Cheung, S. G. (2009). Horseshoe crabs in Hong Kong: current population status and human exploitation. In Tancredi, J. T., Botton, M. L., Smith, D. (eds.), Biology and conservation of horseshoe crabs (pp. 347–360). Springer.

  • Shishikura, F., Nakamura, S., Takahashi, K., & Sekiguchi, K. (1982). Horseshoe crab phylogeny based on amino acid sequences of the fibrino-peptide-like Peptide C. The Journal of Experimental Zoology, 223, 89–91.

    Article  CAS  Google Scholar 

  • Shuster, C. N., Jr., & Botton, M. L. (1985). A contribution to the population biology of horseshoe crabs, Limulus polyphemus (L.), in Delaware Bay. Estuaries, 8, 363–372.

    Article  Google Scholar 

  • Størmer, L. (1952). Phylogeny and taxonomy of fossil horseshoe crabs. Journal of Paleontology, 26, 630–639.

    Google Scholar 

  • Størmer, L. (1955). Merostomata. In R. Moore (Ed.), Treatise on invertebrate paleontology, Part P, Arthropoda 2, Chelicerata with sections on Pycnogonida and Palaeoisopus (pp. 4–41). Boulder: Geological Society of America.

    Google Scholar 

  • Strotz, L., & Allen, A. P. (2013). Assessing the role of cladogenesis in macroevolution by integrating fossil and molecular evidence. Proceedings of the National Academy of Sciences, 110, 2904–2909.

    Article  CAS  Google Scholar 

  • Vía, L. (1987). Artropodos fosiles Triasicos de Alcover-Montral. II. Limulidos. Cuadernos Geología Ibérica, 11, 281–282.

    Google Scholar 

  • Vía Boada, L., & De Villalta, J. F. (1966). Heterolimulus gadeai nov. gen., nov. sp., representante de una nueva familia de Limulacea, en el Triássico español. Comtes Rendues Sommaire Séances Societé Géologique France, 1966, 57–59.

    Google Scholar 

  • Waterman, T. H. (1958). On the doubtful validity of Tachypleus hoeveni Pocock, an Indonesian horseshoe crab (Xiphosura). Postilla, 36, 1–11.

    Google Scholar 

  • Watson, D. M. S. (1909). Limulus woodwardi, sp. nov., from the Lower Oolite of England. Geological Magazine, 6, 14–16.

    Article  Google Scholar 

  • Wiens, J. J. (2005). Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Systematic Biology, 54, 731–742.

    Article  PubMed  Google Scholar 

  • Wilby, P. R., & Briggs, D. E. G. (1997). Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues. Geobios Mémoire Spécial, 20, 493–502.

    Article  Google Scholar 

  • Witherington, B., Kubilis, P., Brost, B., & Meylan, A. (2009). Decreasing annual nest counts in a globally important loggerhead sea turtle population. Ecological Applications, 19, 30–54.

    Article  PubMed  Google Scholar 

  • Woodward, H. (1879). Contributions to the knowledge of fossil Crustacea. Quarterly Journal of the Geological Society London, 35, 549–555.

    Article  Google Scholar 

  • Xia, X. (2000). Phylogenetic relationship among horseshoe crab species: effect of substitution models on phylogenetic analyses. Systematic Biology, 49, 87–100.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Z., & Yoder, A. D. (2003). Comparison of likelihood and bayesian methods for estimating divergence times using multiple gene loci and calibration points, with application to a radiation of cut-looking mouse lemur species. Systematic Biology, 52, 705–716.

    Article  PubMed  Google Scholar 

  • Zinken, C. (1862). Limulus decheni aus dem Braunkohlensandstein de Teuchern. Zeitschrift für Gesammten Naturwissenschaften, 19, 329–331.

    Google Scholar 

  • Zittel, K. (1885). Handbuch der Palaeontologie, Part 1. Palaeozoolgie Vol. 2 (pp. 1–893). Munich and Leipzig.

Download references

Acknowledgments

We are grateful to Lourdes Rojas and Eric Lazo-Wasem (both Yale Peabody Museum) for facilitating access to the extant limulid specimens, Alessandro Garassino (Museo Civico di Storia Naturale di Milano) for photographs of the Italian specimens, and Claire Mellish (Natural History Museum, London) for photographs of the holotype specimen. Antony Lamsdell prepared the idealized reconstruction. Derek Briggs (Yale University) provided useful discussion regarding the soft-tissue preservation. Three anonymous referees provided comments that improved the manuscript.

Author contributions

J.C.L. conducted the phylogenetic analysis and photographed and described the specimens. S.C.M. provided the new specimens and locality information. Both authors contributed intellectually to the study and to the completion of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Lamsdell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamsdell, J.C., McKenzie, S.C. Tachypleus syriacus (Woodward)—a sexually dimorphic Cretaceous crown limulid reveals underestimated horseshoe crab divergence times. Org Divers Evol 15, 681–693 (2015). https://doi.org/10.1007/s13127-015-0229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-015-0229-3

Keywords

Navigation