Skip to main content

Advertisement

Log in

MicroRNA-520c-3p suppresses vascular endothelium dysfunction by targeting RELA and regulating the AKT and NF-κB signaling pathways

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Endothelial injury, which can cause endothelial inflammation and dysfunction, is an important mechanism for the development of atherosclerotic plaque. This study aims to investigate the functional role of miR-520c-3p in vascular endothelium during inflammatory diseases such as atherosclerosis. Quantitative real-time PCR was used to detect miR-520c-3p expression in in human umbilical vein endothelial cells (HUVECs) after treatment with platelet-derived growth factor (PDGF). Furthermore, the effects of miR-520c-3p overexpression and silencing on cell proliferation, adhesion, and apoptosis were assessed. Bioinformatics analysis and Biotin-labeled miRNA pull-down assay were used to confirm the targets of miR-520-3p. Then, the effects of miR-520c-3p on AKT and NF-κB signaling pathways were detected by western blot. Herein, we observed that the expression level of miR-520c-3p was downregulated in HUVECs under PDGF stimulation. Overexpression of miR-520c-3p not only decreased cell adhesion but also promoted proliferation and inhibited apoptosis to protect the viability of endothelial cells. It was confirmed that RELA is the target of miR-520c-3p. MiR-520c-3p inhibited the protein phosphorylation of AKT and RELA, and si-RELA reversed the promotion of AKT and RELA protein phosphorylation by anti-miR-520c-3p. In summary, our study suggested that miRNA-520c-3p targeting RELA through AKT and NF-κB signaling pathways regulated the proliferation, apoptosis, and adhesion of vascular endothelial cells. We conclude that miR-520c-3p may play an important role in the suppression of endothelial injury, which could serve as a biomarker and therapeutic target for atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adyshev DM, Moldobaeva N, Mapes B, Elangovan V, Garcia JG (2013) MicroRNA regulation of nonmuscle myosin light chain kinase expression in human lung endothelium. Am J Respir Cell Mol Biol 49(1):58–66

    Article  CAS  Google Scholar 

  2. Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW (2015) miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med 21(5):307–318

    Article  CAS  Google Scholar 

  3. Aryal B, Suárez Y (2019) Non-coding RNA regulation of endothelial and macrophage functions during atherosclerosis. Vasc Pharmacol 114:64–75

    Article  CAS  Google Scholar 

  4. Baud V, Collares D (2016) Post-translational modifications of RelB NF-κB subunit and associated functions. Cells 5(2):22

    Article  Google Scholar 

  5. Berezin A, Zulli A, Kerrigan S, Petrovic D, Kruzliak P (2015) Predictive role of circulating endothelial-derived microparticles in cardiovascular diseases. Clin Biochem 48(9):562–568

    Article  CAS  Google Scholar 

  6. Cai X, Zhou X, Xiao F, Ye B, Huang W, Huang Z (2018) Inhibition of hsa-miR-6086 protects human umbilical vein endothelial cells against TNFα-induced proliferation inhibition and apoptosis via CDH5. Gene 661:202–208

    Article  CAS  Google Scholar 

  7. Cheng HW, Chen YF, Wong JM, Weng CW, Chen HY, Yu SL, Chen HW, Yuan A, Chen JJ (2017) Cancer cells increase endothelial cell tube formation and survival by activating the PI3K/Akt signalling pathway. J Exp Clin Cancer Res 36(1):27

    Article  Google Scholar 

  8. Ernst O, Vayttaden SJ, Fraser IDC (2018) Measurement of NF-κB activation in TLR-activated macrophages. Methods Mol Biol 1714:67–78

    Article  CAS  Google Scholar 

  9. Favero G, Paganelli C, Buffoli B, Rodella LF, Rezzani R (2014) Endothelium and its alterations in cardiovascular diseases: life style intervention. Biomed Res Int 2014:1–28

    Article  Google Scholar 

  10. Gallo S, Sala V, Gatti S, Crepaldi T (2015) Cellular and molecular mechanisms of HGF/met in the cardiovascular system. Clin Sci 129(12):1173–1193

    Article  CAS  Google Scholar 

  11. Gao W, Liu H, Yuan J, Wu C, Huang D, Ma Y, Zhu J, Ma L, Guo J, Shi H, Zou Y, Ge J (2016) Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-α mediated NF-κB pathway. J Cell Mol Med 20(12):2318–2327

    Article  CAS  Google Scholar 

  12. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N (1998) Vascular endothelial growth factor regulates endothelial cell survival throughthe phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273(46):30336–30343

    Article  CAS  Google Scholar 

  13. Gorur A, Celik A, Yildirim DD, Gundes A, Tamer L (2019) Investigation of possible effects of microRNAs involved in regulation of lipid metabolism in the pathogenesis of atherosclerosis. Mol Biol Rep 46(1):909–920

    Article  CAS  Google Scholar 

  14. Hadi HA, Carr CS, Al Suwaidi J (2005) Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag 1(3):183–198

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hayden MS, Ghosh S (2014) Regulation of NF-κB by TNF family cytokines. Semin Immunol 26(3):253–266

    Article  CAS  Google Scholar 

  16. Hu W, Huang Y (2015) Targeting the platelet-derived growth factor signalling in cardiovascular disease. Clin Exp Pharmacol Physiol 42(12):1221–1224

    Article  CAS  Google Scholar 

  17. Karagkiozaki V, Logothetidis S, Pappa AM (2015) Nanomedicine for atherosclerosis: molecular imaging and treatment. J Biomed Nanotechnol 11(2):191–210

    Article  CAS  Google Scholar 

  18. Keklikoglou I, Koerner C, Schmidt C, Zhang JD, Heckmann D, Shavinskaya A, Allgayer H, Gückel B, Fehm T, Schneeweiss A, Sahin Ö, Wiemann S, Tschulena U (2012) MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways. Oncogene 31(37):4150–4163

    Article  CAS  Google Scholar 

  19. Kim JY, Chun SY, Park JS, Chung JW, Ha YS, Lee JN, Kwon TG (2018) Laminin and platelet-derived growth factor-BB promote neuronal differentiation of human urine-derived stem cells. Tissue Eng Regen Med 15(2):195–209

    Article  CAS  Google Scholar 

  20. Li X, Fu Q, Li H, Zhu L, Chen W, Ruan T, Xu W, Yu X (2019) MicroRNA-520c-3p functions as a novel tumor suppressor in lung adenocarcinoma. FEBS J 286(14):2737–2752

    CAS  PubMed  Google Scholar 

  21. Li YR, Wen LQ, Wang Y, Zhou TC, Ma N, Hou ZH, Jiang ZP (2016) MicroRNA-520c enhances cell proliferation, migration, and invasion by suppressing IRF2 in gastric cancer. FEBS Open Bio 6(12):1257–1266

    Article  CAS  Google Scholar 

  22. Libby P (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32(9):2045–2051

    Article  CAS  Google Scholar 

  23. Lin N, An Y (2017) Blockade of 146b-5p promotes inflammation in atherosclerosis-associated foam cell formation by targeting TRAF6. Exp Ther Med 14(5):5087–5092

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu QB, Wan MY, Wang PY, Zhang CX, Xu DY, Liao X, Sun HJ (2018) Chicoric acid prevents PDGF-BB-induced VSMC dedifferentiation, proliferation and migration by suppressing ROS/NFκB/mTOR/P70S6K signaling cascade. Redox Biol 14:656–668

    Article  CAS  Google Scholar 

  25. Meng F, Liu L, Chin PC, D'Mello SR (2002) Akt is a downstream target of NF-κB. J Biol Chem 277(33):29674–29680

    Article  CAS  Google Scholar 

  26. Miao HL, Lei CJ, Qiu ZD, Liu ZK, Li R, Bao ST, Li MY (2014) MicroRNA -520c-3p inhibits hepatocellular carcinoma cell proliferation and invasion through induction of cell apoptosis by targeting glypican-3. Hepatol Res 44(3):338–348

    Article  CAS  Google Scholar 

  27. Nazari-Jahantigh M, Egea V, Schober A, Weber C (2015) MicroRNA-specific regulatory mechanisms in atherosclerosis. J Mol Cell Cardiol 89(Pt A):35–41

    Article  CAS  Google Scholar 

  28. Parenti A, Paccosi S, Cairo F, Defraia E (2015) Treatment of periodontitis for the prevention of endothelial dysfunction: a narrative review. Curr Vasc Pharmacol 13(6):749–758

    Article  CAS  Google Scholar 

  29. Ren J, Jin P, Wang E, Marincola FM, Stroncek DF (2009) MicroRNA and gene expression patterns in the differentiation of human embryonic stem cells. J Transl Med 7(1):20

    Article  Google Scholar 

  30. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401(6748):86–90

    Article  CAS  Google Scholar 

  31. Sanli T, Strano S, Muti P (2013) Lifestyle factors and MicroRNAs: a new paradigm in Cancer chemoprevention. Microrna 2(2):82–90

    Article  CAS  Google Scholar 

  32. Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM (2005) Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3'UTR evolution. Cell 123(6):1133–1146

    Article  CAS  Google Scholar 

  33. Tao Y, Yu S, Chao M, Wang Y, Xiong J, Lai H (2019) SIRT4 suppresses the PI3K/Akt/NF-κB signaling pathway and attenuates HUVEC injury induced by oxLDL. Mol Med Rep 19(6):4973–4979

    CAS  PubMed  Google Scholar 

  34. Wang J, Zhang C, Li C, Zhao D, Li S, Ma L, Cui Y, Wei X, Zhao Y, Gao Y (2019) MicroRNA-92a promotes vascular smooth muscle cell proliferation and migration through the ROCK/MLCK signalling pathway. J Cell Mol Med 23(5):3696–3710

    Article  CAS  Google Scholar 

  35. Zhou P, Lu S, Luo Y, Wang S, Yang K, Zhai Y, Sun G, Sun X (2017) Attenuation of TNF-α-induced inflammatory injury in endothelial cells by Ginsenoside Rb1 via inhibiting NF-κB, JNK and p38 signaling pathways. Front Pharmacol 8:464

    Article  Google Scholar 

Download references

Funding

This work was supported by Liaoning Provincial Program for Top Discipline of Basic Medical Sciences, the National Natural Science Foundation of China (31370800, 31070719, 30470394, 81402916), the Educational Department of Liaoning Province (2017502656), and Liaoning Provincial Program for Top Discipline of Basic Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Jiao Y performed the experiments, analyzed data, and wrote the paper. Zhao DD performed the experiments and analyzed the data. Gao FH, Hu XY, and Hu XX participated in the experiments. Cui Y, Wei XQ, Xie C, and Li M analyzed data. Zhao Y designed and supervised research. Gao Y designed and supervised research and revised the paper.

Corresponding authors

Correspondence to Ying Zhao or Ying Gao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• miR-520c-3p was downregulated in PDGF-treated HUVECs.

• miR-520c-3p regulated PDGF-induced HUVECs adhesion, proliferation, and apoptosis.

• miR-520c-3p decreased its target gene the expression of RELA/p65 in HUVECs.

• miR-520c-3p plays a protective role in an in vitro endothelial dysfunction model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Zhao, D., Gao, F. et al. MicroRNA-520c-3p suppresses vascular endothelium dysfunction by targeting RELA and regulating the AKT and NF-κB signaling pathways. J Physiol Biochem 77, 47–61 (2021). https://doi.org/10.1007/s13105-020-00779-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00779-5

Keywords

Navigation