Skip to main content
Log in

Saponin as regulator of biofuel: implication for ethnobotanical management of diabetes

  • Mini Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

There has been a sharp rise in the global prevalence of diabetes, obesity, and their comorbid conditions within the last decade prompting significant research into possible causes and cure via therapeutic intervention and lifestyle adjustments. Here, the molecular bases of antidiabetic plants used in the prehistorical treatment of diabetes and obesity are reviewed with particular focus on saponin as the phytotherapeutic principle. Until recently, the phytotherapeutic potentials of saponins have been masked in the heterogeneity of phytochemicals co-extractable during traditional preparations. With improved technique of purification and cutting edge biological assay methods, saponins have emerged as a regulator of primary biofuel availability through direct interaction with energy metabolism, cell signaling, and gene expression. Specific cases of lipoprotein lipase/peroxisome proliferator-activated receptor (PPAR)-gamma/phosphatidylinositide 3-kinase (PI-3-K)/protein kinase B (Akt) activation, adiponectin gene upregulation, fatty acid binding protein 4 repression (FABP4), and glucose transporter type 4 (Glut4) membrane exocytosis have been documented which provide molecular basis for hypocholesterolemic, hypoglycemic, and anti-obesity manifestations observed in experimental animals following saponin treatment. Although intensified research is required to characterize the pharmacophoric features in saponins exhibiting these interactions, however, this preliminary lead is valuable if the world will be free of diabetes, obesity, hypertension, hyperlipidemia, and atherosclerosis in no distant future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Adaramoye O, Amanlou M, Habibi-Rezaei M et al (2012) Methanolic extract of African mistletoe (Viscum album) improves carbohydrate metabolism and hyperlipidemia in streptozotocin-induced diabetic rats. Asian Pacific J Trop Med 2:427–433

    Article  CAS  Google Scholar 

  2. Arya A, Looi CY, Cheah SC et al (2012) Anti-diabetic effects of Centratherum anthelminticum seeds methanolic fraction on pancreatic cells, b-TC6 and its alleviating role in type 2 diabetic rats. J Ethnopharm 144:22–32

    Article  Google Scholar 

  3. Bailey CJ, Day C (1989) Traditional plant medicines as treatment for diabetes. Diabetes Care 12:553–564

    Article  CAS  PubMed  Google Scholar 

  4. Basch E, Ulbricht C, Kuo G et al (2003) Therapeutic applications of fenugreek. Alternative Medici Rev 8:20–27

    Google Scholar 

  5. Berg AH, Combs TP, Du X (2001) The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Medicin 7:947–953

    Article  CAS  Google Scholar 

  6. Bhavsar SK, Singh S, Giri S et al (2009) Effect of saponins from Helicteres isora on lipid and glucose metabolism regulating genes expression. J Ethnopharmacol 124:426–433

    Article  CAS  PubMed  Google Scholar 

  7. Bhavsar SK, Foller M, Gu S et al (2009) Involvement of the PI3K/AKT pathway in the hypoglycemic effects of saponins from Helicteres isora. J Ethnopharmacol 126:386–396

    Article  CAS  PubMed  Google Scholar 

  8. Calera MR, Martinez C, Liu H et al (1998) Insulin increases the association of Akt-2 withGlut4-containing vesicles. The J Biol Chem 273:7201–7204

    Article  CAS  Google Scholar 

  9. Cao H, Gerhold K, Mayers JR et al (2008) Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell 134:933–944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Chen J (2006) Secretion of adiponectin by human placenta: differential modulation of adiponectin and its receptors by cytokines. Diabetalogic 49:1292–1302

    Article  CAS  Google Scholar 

  11. Chen ZH, Jie L, Jie L et al (2008) Saponins isolated from the root of Panax notoginseng showed significant anti-diabetic effects in KK-Ay mice. Ame J Chinese Medic 36:939–951

    Article  CAS  Google Scholar 

  12. Combs TP, Berg AH, Obici S (2001) Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clinical Invest 108:1875–1881

    Article  CAS  Google Scholar 

  13. Combs TP, Utpal PB, Berg AH et al (2004) A transgenic mouse with deletion in the collageneous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinol 145:367–383

    Article  CAS  Google Scholar 

  14. Cook KS, Min HY, Johnson D et al (1987) Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science 237:402–404

    Article  CAS  PubMed  Google Scholar 

  15. Cui SC, Jie Y, Xiao-Hui Z et al (2012) Antihyperglycemic and antioxidant activity of water extract from Anoectochilus roxburghii in experimental diabetes. Exp Toxicologic Pathol. doi:10.1016/j.etp.2012.02.003

    Google Scholar 

  16. Dewanjee S, Das AK, Sahu R et al (2009) Antidiabetic activity of Diospyros peregrina fruit: effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes. Food Chemical Toxicol 47:2679–2685

    Article  CAS  Google Scholar 

  17. Díez JJ, Iglesias P (2003) The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur J Endocrinol 148:293–300

    Article  PubMed  Google Scholar 

  18. Elbrecht A, Chen Y, Cullinan CA et al (1996) Molecular cloning, expression and characterization of human peroxisome proliferator activated receptors gamma 1 and gamma 2. Biochem Biophys Res Comm 224:431–437

    Article  CAS  PubMed  Google Scholar 

  19. Elekofehinti OO, Adanlawo IG, Saliu JA et al (2012) Saponins from Solanum anguivi fruits exhibit hypolipidemic potential in Rattus novergicus. Der Pharmacia Lettre 4:811–814

    CAS  Google Scholar 

  20. Elekofehinti OO, Adanlawo IG, Fakoya A et al (2012) Effect of saponin from Solanum anguivi Lam. fruit on heart and kidney superoxide dismutase, catalase and malondialdehyde in rat. Curr Res J Biol Sci 4:530–533

    CAS  Google Scholar 

  21. Elekofehinti OO, Adanlawo IG, Komolafe K et al (2012) Saponins from Solanum anguivi exhibit antioxidant potential in Wistar rats. Ann Bio Res 3:3212–3217

    CAS  Google Scholar 

  22. Elekofehinti OO, Adanlawo IG, Fakoya A (2012) The effect of saponin from Solanum anguivi Lam. fruit on serum lipid and oxidative stress in hepatocyte of diabetic rats. Rev Bras Pla Med 14:S15–S16

    Google Scholar 

  23. Elekofehinti OO, Kamdem JP, Kade IG et al (2013) Hypoglycemic, anti peroxidative and antihyperlipidemic effects of saponins from Solanum anguivi Lam. fruits in alloxan-induced diabetic rats. South African J Bot 88:56–61

    Article  CAS  Google Scholar 

  24. Elekofehinti OO, Kamdem JP, Kade IJ et al (2013) Saponins from Solanum anguivi lam. fruit exhibit in vitro and in vivo antioxidant activities in alloxan-induced oxidative stress. Asian J Pharm Clin Res 6:249–254

    Google Scholar 

  25. Elmasri H, Karaaslan C, Teper Y et al (2009) Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB 23:3865–3873

    Article  CAS  Google Scholar 

  26. Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899

    Article  CAS  PubMed  Google Scholar 

  27. Eynatten MV, Schneider JG, Humpert PM et al (2004) Decreased plasma lipoprotein lipase in hypo adiponectinemia. Diabetes Care 27:2925–2929

    Article  Google Scholar 

  28. Eu CH, Lim WY, Ton SH et al (2010) Glycyrrhizic acid improved lipoprotein lipase expression, insulin sensitivity, serum lipid and lipid deposition in high-fat diet-induced obese rats. Lipids health Disea 9:1–9

    Article  CAS  Google Scholar 

  29. Eurich DT, McAlister FA, Blackburn DF et al (2007) Benefits and harms of antidiabetic agents in patients with diabetes and heart failure: systematic review. BMJ 335:497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Evans RM, Barish GD, Wang YX (2004) PPRAs and the complex journey to obesity. Nature 10:1–6

    Google Scholar 

  31. Fatima SS, Rajasekhar MD, Kumar KV et al (2010) Antidiabetic and antihyperlipidemic activity of ethyl acetate:isopropanol (1:1) fraction of Vernonia anthelmintica seeds in streptozotocin induced diabetic rats. Food Chem Toxicol 48:495–501

    Article  CAS  PubMed  Google Scholar 

  32. Flier JS, Cook KS, Usher P et al (1987) Severely impaired adipsin expression in genetic and acquired obesity. Science 237:405–408

    Google Scholar 

  33. Francis G, Kerem Z, Makkar HPS et al (2002) The biological action of saponins in animal systems: a review. British J Nutri 88:587–605

    Article  CAS  Google Scholar 

  34. Furuhashi M, Tuncman G, Gorgun CZ et al (2007) Treatment of diabetes and atheroscle-rosis by inhibiting fatty-acid-binding protein aP2. Nature 447:959–965

    Article  CAS  PubMed  Google Scholar 

  35. Gandhi GR, Ignacimuthu S, Paulraj MG (2012) Hypoglycemic and b-cells regenerative effects of A. eglemarmelos (L.) Corr. Bark extract in streptozotocin-induced diabetic rats. Food Chem Toxicol 50:1667–1674

    Article  CAS  PubMed  Google Scholar 

  36. Ghosh A, Shieh JJ, Pan CJ et al (2002) The catalytic center of glucose-6-phosphatase. HIS176 is the nucleophile forming the phosphohistidine-enzyme intermediate during catalysis. J Biol Chem 277:32837–32842

    Article  CAS  PubMed  Google Scholar 

  37. Gibbs EM, Stock JL, McCoid SC et al (1995) Glycemic improvement in diabetic db/db mice by overexpression of the human insulin regulatable glucose transporter (GLUT4). The J Clinical Investi 95:1512–1518

    Article  CAS  Google Scholar 

  38. Germinario R, Sniderman AD, Manuel S et al (1993) Coordinate regulation of triacylglycerol synthesis and glucose transport by acylation stimulating protein. Metabolism 42:574–580

    Article  CAS  PubMed  Google Scholar 

  39. Ha TS, Ji- Choi Y, Park HY et al (2011) Ginseng total saponin improves podocyte hyperpermeability induced by high glucose and advanced glycosylation end products. J Korean Med Sci 26:1316–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Han KL, Jung MH, Sohn JH et al (2006) Ginsenoside 20(S)-proto panaxa triol (PPT) activates peroxisome proliferator-activated receptor g (PPARg) in 3T3-L1 adipocytes. Biol Pharm Bull 29:110–113

    Article  CAS  PubMed  Google Scholar 

  41. Hallakou S, Doare’ L, Foufelle F et al (1997) Pioglitazone induces in vivo adipocyte differentiation in the obese zuckerfa/fa rat. Diabetes 46:1393–1399

    Article  CAS  PubMed  Google Scholar 

  42. Hardie DH, Carling D (1997) The AMP-activated protein kinase. Fuel gauge of the mammalian cell? Eur J Biochem 246:259–273

    Article  CAS  PubMed  Google Scholar 

  43. He W, Barak Y, Hevener A et al (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100:712–717

    Google Scholar 

  44. Hertzel AV, Bernlohr DA (2000) The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol Metab 11:175–180

    Article  CAS  PubMed  Google Scholar 

  45. Horton JD, Goldstein JL, Brown MS (2000) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clinical Invest 109:1125–1131

    Article  Google Scholar 

  46. Hotta K, Funahashi T, Bodkin NL (2001) Circulating concentrations of the adipocyte protein, adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50:1126–1133

    Article  CAS  PubMed  Google Scholar 

  47. Hu XQ, Wang YM, Wang JF et al (2010) Dietary saponins of sea cucumber alleviate orotic acid-induced fatty liver in rats via PPARα and SREBP-1c signaling. Lipids Health Dis 9:25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Hu X, Li Z, Xue Y et al (2012) Dietary saponins of sea cucumber ameliorate obesity, hepatic steatosis, and glucose intolerance in high-fat diet-fed mice. J Med Food 15:909–916

    Article  CAS  PubMed  Google Scholar 

  49. Huang CS, Yin MC, Chiu LC (2012) Antihyperglycemic and antioxidative potential of Psidium guajava fruit in streptozotocin-induced diabetic rats. Food Chem Toxicol 49:2189–2195

    Article  CAS  Google Scholar 

  50. Indradevi S, Ilavenil S, Kaleeswaran B et al (2012) Ethanolic extract of Crinum asiaticum attenuates hyperglycemia-mediated oxidative stress and protects hepatocytes in alloxan induced experimental diabetic rats. J King Saud University – Science 24:171–177

    Article  Google Scholar 

  51. Isbrucker RA, Burdock GA (2006) Risk and safety assessment of the consumption of licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol 46:167–192

    Article  CAS  PubMed  Google Scholar 

  52. Jawla S, Kumar Y, Khan MSY (2012) Hypoglycemic activity of Bougainvillea spectabil is stem bark in normal and alloxan-induced diabetic rats. Asian Pac J of Trop Biomed 2:S919–S923

    Article  Google Scholar 

  53. Kageyama H, Hirano T, Okada K et al (2003) Lipoprotein lipase mRNA in white adipose tissue but not in skeletal muscle is increased by pioglitazone through PPAR-gamma. Biochem Res Commun 305:22–27

    Article  CAS  Google Scholar 

  54. Kelley DE, McKolanis T, Hegazi RA et al (2002) Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Ameri J Physiol Endocrinolog Metabol 285:E906–E916

    Google Scholar 

  55. Khan MM, Naqvi TS, Naqvi MS (2012) Identification of phytosaponins as novel biodynamic agents: an updated overview. Asian J Experim Biolog Sci 3:459–467

    Google Scholar 

  56. Kim JK, Gavrilova O, Chen Y et al (2002) Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem 275:8456–8460

    Article  Google Scholar 

  57. Kim JY, Xiao H, Tan Y et al (2009) The effects and mechanism of saponins of Panax notoginseng on glucose metabolism in 3T3-L1 cells. Ame J Chinese Med 37:1179–1189

    Article  CAS  Google Scholar 

  58. Kohn AD, Summers SA, Birnbaum MJ et al (1996) Expression of a constitutively active AktSer/Thr kinase in 3 T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. The J Biol Chem 271:31372–31378

    Article  CAS  Google Scholar 

  59. Kumar R, Patel DK, Prasad SK et al (2012) Antidiabetic activity of alcoholic root extract of Caesalpinia digynain on streptozotocin-nicotinamide induced diabetic rats. Asian Pac J Trop Biomed 2:S934–S940

    Article  Google Scholar 

  60. Kumar BSA, Lakshman K, Jayaveea KN et al (2012) Antidiabetic, antihyperlipidemic and antioxidant activities of methanolic extract of Amaranthus viridis Linn in alloxan induced diabetic rats. Experiment Toxicol Pathol 64:75–79

    Article  CAS  Google Scholar 

  61. Kwon DY, Kim YS, Ryu YS et al (2012) Platyconic acid, a saponin from Platycodi radix, improves glucose homeostasis by enhancing insulin sensitivity in vitro and in vivo. Eur J Nutr 51:529–540

    Article  CAS  PubMed  Google Scholar 

  62. Lann D, LeRoith D (2007) Insulin resistance as the underlying cause for the metabolic syndrome. Med Clinical North Am 91:1063–1077

    Article  CAS  Google Scholar 

  63. Law M (2000) Plant sterol and stanol margarines and health. B Med J 320:861–864

    Article  CAS  Google Scholar 

  64. Lee KT, Sohn IC, Kim DH et al (2000) Hypoglycaemic and hypolipidemic effects of tectorigenin and kaika-saponin III in the streptozotocin-induced diabetic rat and their antioxidant activity in vitro. Archives of Pharm Res 23:461–466

    Article  CAS  Google Scholar 

  65. Lee KT, Jung TW, Lee HJ et al (2011) The antidiabetic effect of genosenoside Rb2 via activation of AMPK. Archives Pharmaceu Res 34:1201–1208

    Article  CAS  Google Scholar 

  66. Li Y, Qi Y, Huang TH et al (2008) Pomegranate flower: a unique traditional antidiabetic medicine with dual PPAR-alpha/-gamma activator properties. Diabetes Obesity Metabol 10:10–17

    Article  CAS  Google Scholar 

  67. Lihn AS, Pedersen SB, Richelsen B (2005) Adiponectin: action, regulation and association to insulin sensitivity. Obesity Rev 6:13–21

    Article  CAS  Google Scholar 

  68. Lim S, Yoon JW, Choi SH et al (2009) Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabol 58:8–12

    Article  CAS  Google Scholar 

  69. Liu YW, Zhu X, Li W et al (2012) Ginsenoside Re attenuates diabetes-associated cognitive deficits in rats. Pharmacol Biochem Behavior 101:93–98

    Article  CAS  Google Scholar 

  70. Lu T, Sheng H, Wu J et al (2012) Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes. Nutrition Res 32:408–412

    Article  CAS  Google Scholar 

  71. Lum JJ, Bui T, Gruber M et al (2007) The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes and Develop 21:1037–1049

    Article  CAS  Google Scholar 

  72. Luo JZ, Luo L (2009) Ginseng on hyperglycemia: effects and mechanisms. Evidence Based Comp Altern Med 6:423–427

    Google Scholar 

  73. Maeda K, Cao H, Kono K et al (2005) Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metabol 1:107–119

    Article  CAS  Google Scholar 

  74. Majumder PK, Febbo PG, Bikoff R et al (2004) mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Medici 10:594–601

    Article  CAS  Google Scholar 

  75. Makowski L, Brittingham KC, Reynolds JM et al (2005) The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IB kinase activities. J Biol Chem 280:12888–12895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Makowski L, Hotamisligil GS (2005) The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr Opinion Lipidol 16:543–548

    Article  CAS  Google Scholar 

  77. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Mathur, R (2004) Diabetes mellitus. 2004. MedicineNet Inc. www.medicinenet.com/diabetes_mellitus/articles

  79. Meliani N, Amine Dib ME, Allali H et al (2011) Hypoglycaemic effect of Berberis vulgaris L. in normal and streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed 1:468–471

    Article  PubMed Central  PubMed  Google Scholar 

  80. Michalik L, Auwerx J, Berger JP et al (2006) International union of pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev 58:726–741

    Article  CAS  PubMed  Google Scholar 

  81. Moller DE (2001) New drug targets for type 2 diabetes and the metabolic syndrome. Nature 414:821–827

    Article  CAS  PubMed  Google Scholar 

  82. Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55:S9–S15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Nyenwe EA, Jerkins TW, Umpierrez GE et al (2011) Management of type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes. Metabolism 60:1–23

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Nyirenda KK, Saka JDK, Naidoo D et al (2012) Antidiabetic, antioxidant and antimicrobial activities of Fadogia ancylantha extracts from Malawi. J Ethnopharmacol 143:372–376

    Article  CAS  PubMed  Google Scholar 

  85. Oakenful DG, Sidhu GS (1990) Could saponins be a useful treatment for hypercholesterolaemia? Eur J Clini Nut 44:79–88

    Google Scholar 

  86. Okokon JE, Antia BS, Udobang JA (2012) Antidiabetic activities of ethanolic extract and fraction of Anthocleistadj alonensis. Asian Pac Jour Trop Biomed 2:461–464

    Article  Google Scholar 

  87. Omara EA, Nadab SA, Farrag ARH et al (2012) Therapeutic effect of Acacia nilotica pods extract on streptozotocin induced diabetic nephropathy in rat. Phytomedi 19:1059–1067

    Article  Google Scholar 

  88. Omonkhua AA, Onoagbe IO, Fajimeye IA et al (2012) Long-term anti-diabetic and anti-hyperlipidaemic effects of aqueous stem bark extracts of Irvingia gabonensis in streptozotocin-induced diabetic rats. Asian Pac Jour Trop Biomed 2:1–6

    Google Scholar 

  89. Omoruyi FO (2008) Jamaican bitter yam sapogenin: potential mechanisms of action in diabetes. Plant Foods Hum Nutr 63:135–140

    Article  PubMed  Google Scholar 

  90. Osbourn A, Rebecca JMG, Robert AF (2011) The saponins—polar isoprenoids with important and diverse biological activities. Nat Products Rep 28:1261

    Article  CAS  Google Scholar 

  91. Pereira DF, Kappel VD, Cazarolli LH et al (2012) Influence of the traditional Brazilian drink Ilex paraguariensis tea on glucose homeostasis. Phytomed 19:868–877

    Article  CAS  Google Scholar 

  92. Pollare T, Vessby B, Lithell H (1991) Lipoprotein lipase activity in skeletal muscle is related to insulin sensitivity. Arteriosclerosis Thromb 11:1192–1203

    Article  CAS  Google Scholar 

  93. Preiss-Landl K, Zimmermann R, Hammerle G et al (2002) Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opinion on Lipidol 13:471–481

    Article  CAS  Google Scholar 

  94. Rajesh R, Chitra K, Padmaa M et al (2012) Anti hyperglycemic and antihyperlipidemic activity of aerial parts of Aerva lanata Linn in streptozotocin induced diabetic rats. Asian Pac Jour Trop Biomed 2:S924–S929

    Article  Google Scholar 

  95. Raju J, Rao CV (2012) Diosgenin, a steroid saponin constituent of yams and fenugreek: emerging evidence for applications in medicine, bioactive compounds in phytomedicine, Prof. Iraj Rasooli (Ed.), ISBN: 978-953-307-805-2, InTech

  96. Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the anti-apoptotic effects of growth factors and Akt. Oncogene 25:4683–4696

    Article  CAS  PubMed  Google Scholar 

  97. Roepstorff C, Halberg N, Hillig T et al (2005) Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. American J Physiol Endocrinol Metab 288:E133–E142

    Article  CAS  Google Scholar 

  98. Ronti T, Lupattelli G, Mannarino E (2006) The endocrine function of adipose tissue: an update. Clin Endocrinol 64:355–365

    CAS  Google Scholar 

  99. Sampanis CH (2008) Management of hyperglycemia in patients with diabetes mellitus and chronic renal failure. Hippokratia 12:22–27

    PubMed Central  PubMed  Google Scholar 

  100. Sato M, Tai T, Nunoura Y et al (2002) Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol Pharmacol Bull 15:81–86

    Article  Google Scholar 

  101. Shang W, Ying Y, Boren J et al (2007) Ginsenoside Rb1 promotes adipogenesis in 3T3-L1 cells by enhancing PPARγ2 and C/EBPα gene expression. Life Sci 80:618–625

    Article  CAS  PubMed  Google Scholar 

  102. Shuli M, Gao W, Zhang Y et al (2010) Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia 81:703–714

    Article  CAS  Google Scholar 

  103. Simsolo RB, Ong JM, Saffari B et al (1992) Effect of improved diabetes control on the expression of lipoprotein lipase in human adipose tissue. J Lipid Res 33:89–95

    CAS  PubMed  Google Scholar 

  104. Somsák L, Nagya V, Hadady Z et al (2003) Glucose analog inhibitors of glycogen phosphorylases as potential antidiabetic agents: recent developments. Curr Pharmacol Design 9:1177–1189

    Article  Google Scholar 

  105. Song YB, An YR, Kim SJ et al (2011) Lipid metabolic effect of Korean red ginseng extract in mice fed on a high-fat diet. J Sci Food Agric 92:388–396

    Article  PubMed  CAS  Google Scholar 

  106. Sparg SG, Light ME, Van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  CAS  PubMed  Google Scholar 

  107. Spiegelman BM, Green H (1980) Control of specific protein biosynthesis during the adipose conversion of 3T3 cells. J Biol Chem 255:8811–8818

    CAS  PubMed  Google Scholar 

  108. Story JA, LePage SL, Petro MS (1984) Interactions of alfalfa plant and sprout saponins with cholesterol in vitro and in cholesterol-fed rats. Ame J Clin Nutri 39:917–929

    CAS  Google Scholar 

  109. Suganya S, Narmadha R, Gopalakrishnan VK et al (2012) Hypoglycemic effect of Costus pictus D. Don on alloxan induced type 2 diabetes mellitus in albino rats. Asian Pac J Trop Dis 2:117–123

    Article  CAS  Google Scholar 

  110. Sundqvist A, Bengoechea-Alonso MT, Ye X et al (2005) Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF (Fbw7). Cell Metabol 1:379–391

    Article  CAS  Google Scholar 

  111. Tammi A, Ronnemaa T, Gylling H (2000) Plant stanol ester margarine lowers serum total and low-density lipoprotein cholesterol concentrations of healthy children: the STRIP project. Special Turku Coronary Risk Factors Intervention Project. J Pediatrics 136:503–510

    Article  CAS  Google Scholar 

  112. Tao Y, Cianflone K, Sniderman AD et al (1997) Acylation-stimulating protein (ASP) regulates glucose transport in the rat L6 muscle cell line. Biochim Biophys Acta 1344:221–229

    Article  CAS  PubMed  Google Scholar 

  113. Taskinen MR (1987) Lipoprotein lipase in diabetes. Diabetes Metab 3:551–570

    Article  CAS  Google Scholar 

  114. Ukkola O, Santaniemi M (2002) Adiponectin: a link between excess adiposity and associated comorbidities? J Molecular medic 80:696–702. doi:10.1007/s00109-002-0378-7

    Article  CAS  Google Scholar 

  115. Uemura T, Goto T, Kang MS et al (2010) Diosgenin, the main aglycon of fenugreek, inhibits LXRa activity in HepG2 cells and decreases plasma and hepatic triglycerides in obese diabetic mice. The J Nutri 141:17–23

    Article  CAS  Google Scholar 

  116. Uysal KT, Scheja L, Wiesbrock SM et al (2000) Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinol 141:3388–3396

    Article  CAS  Google Scholar 

  117. Viollet B, Foretz M, Guigas B et al (2006) Activation of AMP-activated protein kinase in the liver:a new strategy for the management of metabolic hepatic disorders. J Physiol 574:41–53

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Wegener G, Krause U (2002) Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle. Biochem Soc Trans 30:264–270

    Article  CAS  PubMed  Google Scholar 

  119. Whiteman EL, Cho H, Birnbaum MJ (2002) Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metabol 13:444–451

    Article  CAS  Google Scholar 

  120. WHO (2009) Prevalence data of diabetes worldwide

  121. WHO (2010) Global status report on noncommunicable diseases. World Health Organization, Geneva

    Google Scholar 

  122. Wolfrum C (2007) Cytoplasmic fatty acid binding protein sensing fatty acids for peroxisome proliferator activated receptor activation. Cell Molec Life Sci 64:2465–2476

    Article  CAS  PubMed  Google Scholar 

  123. Xiaoxing Y, Yindi Z, Haiwei W et al (2004) Protective effects of Astragalus saponin I on early stage of diabetic nephropathy in rats. J Pharmacological Sci 95:256–266

    Article  Google Scholar 

  124. Xu A, Wang H, Hoo RLC et al (2008) Selective elevation of adiponectin production by the natural compounds derived from a medicinal herb alleviates insulin resistance and glucose intolerance in obese mice. Endocrinol 150:625–633

    Article  CAS  Google Scholar 

  125. Yan LL, Zhang YJ, Gao WY et al (2009) In vitro and in vivo anticancer activity of steroid saponins of Parispolyphylla var. yunnanensis. Exp Oncol 31:27–32

    PubMed  Google Scholar 

  126. Yadav US, Moorthy K, Baquer NZ (2004) Effect of sodium-orthovanadate and Trigonella foenum-graecum seed on hepatic and renal lipogenic enzymes and lipid profile during alloxan diabetes. J Biosci 29:81–91

    Article  CAS  PubMed  Google Scholar 

  127. Yasruel Z, Cianflone K, Sniderman AD et al (1991) Effect of acylation stimulating protein on the triacylglycerol synthetic pathway of human adipose tissue. Lipids 26:495–499

    Article  CAS  PubMed  Google Scholar 

  128. Zheng T, Shu G, Yang Z et al (2012) Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr.in type 2 diabetic rats. J Ethnopharmacol 139:814–821

    Article  CAS  PubMed  Google Scholar 

  129. Zimmerman AW, Veerkamp JH (2002) New insights into the structure and function of fatty acid-binding proteins. Cell Molec Life Sci 59:1096–1116

    Article  CAS  PubMed  Google Scholar 

  130. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

We declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olusola Olalekan Elekofehinti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elekofehinti, O.O., Omotuyi, I.O., Kamdem, J.P. et al. Saponin as regulator of biofuel: implication for ethnobotanical management of diabetes. J Physiol Biochem 70, 555–567 (2014). https://doi.org/10.1007/s13105-014-0325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-014-0325-4

Keywords

Navigation