Skip to main content

Advertisement

Log in

Modulation of biogenic amines content by poly(propylene imine) dendrimers in rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Biogenic amines and polyamines participate in all vital organism functions, their levels being important function determinants. Studies were performed to check whether repeated administration of poly(propylene imine) (PPI) dendrimers, synthetic macromolecules with diaminobutane core, and peripheral primary amine groups, may influence the endogenous level of amines, as represented by the two of them: spermidine, a natural derivative of diaminobutane, and histamine. The experiment was carried out on Wistar rats. Fourth generation PPI dendrimer, as well as maltotriose-modified fourth generation PPI dendrimers with (a) cationic open sugar shell and (b) neutral dense sugar shell that possess a higher biocompatibility, was used. Applying the combination of column chromatography on Cellex P and spectrofluorimetric assays of o-phthaldialdehyde, the final amine condensation products were employed to analyze tissue spermidine and histamine outside the central nervous system. Furthermore, radioenzymatic assay was used to measure histamine levels in the brain. The obtained results indicate that in some tissues, the endogenous concentrations of histamine and spermidine may be affected by dendrimers depending on their dose and type of dendrimers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Fourth generation PPI:

Poly(propylene imine) dendrimers

BA:

Biogenic amines

PA:

Polyamines

OPT:

o-Phtalaldehyde

References

  1. Agostinelli E, Marques MP, Calheiros R, Gil FP, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38(2):393–403

    Article  PubMed  CAS  Google Scholar 

  2. Appelhans D, Oertel U, Mazzeo R, Komber H, Hoffmann J, Weidner S, Brutschy B, Voit B, Ottaviani MF (2010) Dense-shell glycodendrimers: UV/Vis and electron paramagnetic resonance study of metal ion complexation. Proc R Soc A 466:1489–1513

    Article  CAS  Google Scholar 

  3. Bachrach U, Wang YC, Tabib A (2001) Polyamines: new cues in cellular signal transduction. News Physiol Sci 16:106–109

    PubMed  CAS  Google Scholar 

  4. Baxter JH, Adamik R (1978) Differences in requirements and actions of various histamine-releasing agents. Biochem Pharmacol 27:497–503

    Article  PubMed  CAS  Google Scholar 

  5. Berlin G (1984) The dynamics of mast cell secretion mediated by IgE or polyamines. Agents Actions 15:482–487

    Article  PubMed  CAS  Google Scholar 

  6. Burns M, Graminski G, Weeks R, Chen Y, O’Brien T (2009) Lipophilic lysine-spermine conjugates are potent polyamine transport inhibitors for use in combination with a polyamine biosynthesis inhibitor. J Med Chem 52:1983–1993

    Article  PubMed  CAS  Google Scholar 

  7. Cipolla B, Guille F, Moulinoux JP, Quemener V, Staerman F, Corbel L, Lobel B (1993) Polyamines and prostatic carcinoma: clinical and therapeutic implications. Eur Urol 24:124–131

    PubMed  CAS  Google Scholar 

  8. Cohen SS (2001) A guide to the polyamines. News Physiol Sci 16:106–109

    Google Scholar 

  9. Fogel WA, Lewinski A, Jochem J (2005) Histamine in idiopathic inflammatory bowel diseases—not a standby player. Folia Med Cracov 46(3–4):107–118

    PubMed  CAS  Google Scholar 

  10. Freed DLJ (1999) Do dietary lectins cause disease? Br Med J 318:1023–1024

    Article  CAS  Google Scholar 

  11. Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4:781–792

    Article  PubMed  CAS  Google Scholar 

  12. Håkanson R, Rönnberg AL (1973) Fluorometric determination of spermidine using o-phthalaldehyde: optimum reaction conditions and tests of identity. Anal Biochem 54(2):353–361

    Article  PubMed  Google Scholar 

  13. Håkanson R, Rönnberg AL, Sjölund K (1972) Fluorometric determination of histamine with OPT: optimum reaction conditions and tests of identity. Anal Biochem 47(2):356–370

    Article  PubMed  Google Scholar 

  14. He S-H (2004) Key role of mast cells and their major secretory products in inflammatory bowel disease. World J Gastroenterol 10(3):309–318

    PubMed  CAS  Google Scholar 

  15. Janaszewska A, Ziemba B, Ciepluch K, Appelhans D, Voit B, Klajnert B, Bryszewska (2012) The biodistribution of maltotriose-modified poly(propylene imine) (PPI) dendrimers conjugated with fluorescein—proofs of crossing blood–brain–barrier. New J Chem 36:350–353

  16. Jiang YY, Tang GT, Zhang LH, Kong SY, Zhu SJ, Pei YY (2010) PEGylated PAMAM dendrimers as a potential drug delivery carrier: in vitro and in vivo comparative evaluation of covalently conjugated drug and noncovalent drug inclusion complex. J Drug Target 18(5):389–403

    Article  PubMed  CAS  Google Scholar 

  17. Jones BL, Kearns GL (2011) Histamine: new thoughts about a familiar mediator. Clin Pharmacol Ther 89(2):189–197

    Article  PubMed  CAS  Google Scholar 

  18. Klajnert B, Appelhans D, Komber H, Morgner N, Schwarz S, Richter S, Brutschy B, Ionov M, Tonkikh A, Bryszewska M, Voit B (2008) The influence of densely organized maltose shells on the biological properties of poly(propylene imine) dendrimers: new effects dependent on hydrogen bonding. Chem Eur J 14:7030–7041

    Article  PubMed  CAS  Google Scholar 

  19. Klajnert B, Bryszewska M (2007) Dendrimers in medicine. Nova Science Publishers, Inc., New York

    Google Scholar 

  20. Kurosawa M, Uno D, Kobayashi S (1991) Naturally occurring aliphatic polyamines-induced histamine release from rat peritoneal mast cells. Allergy 46:349–354

    Article  PubMed  CAS  Google Scholar 

  21. Leveque J, Foucher F, Bansard JY, Havouis R, Grall JY, Moulinoux JP (2000) Polyamine profiles in tumor, normal tissue of the homologous breast, blood, and urine of breast cancer sufferers. Breast Cancer Res Treat 60:99–105

    Article  PubMed  CAS  Google Scholar 

  22. Neerman MF, Zhang W, Parrish AR, Simanek EE (2004) In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int J Pharm 281:129–132

    Article  PubMed  CAS  Google Scholar 

  23. Ogasawara M, Yamauchi K, Satoh Y, Yamaji R, Inui K, Jonker JW, Schinkel AH, Maeyama K (2006) Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. J Pharmacol Sci 101:24–30

    Article  PubMed  CAS  Google Scholar 

  24. Okuda T, Kawakami S, Maeie T, Niidome T, Yamashita F, Hashida M (2006) Biodistribution characteristics of amino acid dendrimers and their PEGylated derivatives after intravenous administration. J Control Release 114:69–77

    Article  PubMed  CAS  Google Scholar 

  25. Prieto MJ, Temprana CF, Del Rio Zabala NE, Marotta CH, Alonso Sdel V (2011) Optimization and in vitro toxicity evaluation of G4 PAMAM dendrimer–risperidone complexes. Eur J Med Chem 46(3):845–850

    Article  PubMed  CAS  Google Scholar 

  26. Roberts JC, Bhalgat MK, Zera RT (1996) Preliminary biological evaluation of polyamidoamine (PAMAM) starburst dendrimers. Biomed Mater Res 30(1):53–65

    Article  CAS  Google Scholar 

  27. Seiler N, Raul F (2005) Polyamines and apoptosis. J Cell Mol Med 9:623–642

    Article  PubMed  CAS  Google Scholar 

  28. Shaff RE, Beaven MA (1979) Increased sensitivity of the enzymatic isotopic assay of histamine: measurement of histamine in plasma and serum. Anal Biochem 94:425–430

    Article  PubMed  CAS  Google Scholar 

  29. Silla-Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231

    Article  PubMed  CAS  Google Scholar 

  30. Suzuki E, Ninomiya Y, Umezawa K (2009) Induction of histidine decarboxylase in macrophages inhibited by the novel NF-kappaB inhibitor (−)-DHMEQ. Biochem Biophys Res Commun 379(2): 379–383

    Article  Google Scholar 

  31. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 57:2106–2129

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka-Shintani M, Watanabe M (2007) Immunohistochemical study of enterochromaffin-like cell in human gastric mucosa. Pathol Int 57(9):572–583

    Article  PubMed  Google Scholar 

  33. Tomasi S, Renault J, Martin B, Duhieu S, Cerec V, Le Roch M, Uriac P, Delcros J (2010) Targeting the polyamine transoprt system with benzazepine- and azepine-polyamine conjugates. J Med Chem 53:7647–7663

    Article  PubMed  CAS  Google Scholar 

  34. Ziemba B, Janaszewska A, Ciepluch K, Krotewicz M, Fogel WA, Appelhans D, Voit B, Bryszewska M, Klajnert B (2011) In vivo toxicity of poly(propyleneimine) dendrimers. J Biomed Mater Res Part A. 99 A: 261–268

Download references

Acknowledgments

Studies were funded by the project “Biological properties and biomedical applications of dendrimers” operated within the Foundation for Polish Science Team Programme cofinanced by the EU European Regional Development Fund. The work was done in the frame of the COST Action TD0802 “Dendrimers for biomedical applications.” We also thank Mr. Ireneusz Pieszynski for his help in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Ciepluch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciepluch, K., Ziemba, B., Janaszewska, A. et al. Modulation of biogenic amines content by poly(propylene imine) dendrimers in rats. J Physiol Biochem 68, 447–454 (2012). https://doi.org/10.1007/s13105-012-0158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-012-0158-y

Keywords

Navigation