Skip to main content
Log in

The Pathophysiology of Intracerebral Hemorrhage Formation and Expansion

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Intracerebral hemorrhage is a devastating disease. Despite its clinical importance, the pathophysiology of intracerebral hemorrhage is not well understood. Hematoma expansion occurs in a large subset of patients and is a predictor of poor outcomes. Since hematoma growth provides a potential opportunity for therapeutic intervention, a thorough understanding of its biological mechanisms is of key importance. After vessel rupture, an initial hematoma forms. Following this initial phase, accumulating evidence suggests that the mass effect causes secondary vessel rupture, which contributes to the hematoma and may trigger an avalanche of further vessel ruptures. The circumstances under which this occurs and to what extent secondary hemorrhage contributes to final hematoma volume remain unknown, however. To address these questions, a translational approach seems most suitable. Current experimental models include intracranial injections of collagenase or autologous blood. Each has individual strengths and weaknesses in its ability to simulate human intracerebral hemorrhage. The ultimate goal for improved understanding and modeling of the pathophysiology of hematoma expansion is to identify new treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jakubovic R, Aviv RI. Intracerebral hemorrhage: toward physiological imaging of hemorrhage risk in acute and chronic bleeding. Front Neurol. 2012;3:86.

    Article  PubMed Central  PubMed  Google Scholar 

  2. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9:167–76.

    Article  PubMed  Google Scholar 

  3. Wang X, Arima H, Al-Shahi Salman R, Woodward M, Heeley E, et al. Clinical Prediction Algorithm (BRAIN) to Determine Risk of Hematoma Growth in Acute Intracerebral Hemorrhage. Stroke. 2015;46:376–81.

    Article  CAS  PubMed  Google Scholar 

  4. Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66:1175–81.

    Article  CAS  PubMed  Google Scholar 

  5. Anderson CS, Chalmers J, Stapf C. Blood-pressure lowering in acute intracerebral hemorrhage. N Engl J Med. 2013;369:1274–5.

    CAS  PubMed  Google Scholar 

  6. Goldstein J, Brouwers H, Romero J, McNamara K, Schwab K, et al. SCORE-IT: the Spot Sign score in restricting ICH growth horizontal line an Atach-II ancillary study. J Vasc Interv Neurol. 2012;5:20–5.

    PubMed Central  PubMed  Google Scholar 

  7. Mayer SA. Recombinant activated factor VII for acute intracerebral hemorrhage. Stroke. 2007;38:763–7.

    Article  CAS  PubMed  Google Scholar 

  8. Krafft PR, Rolland WB, Duris K, Lekic T, Campbell A, et al. Modeling intracerebral hemorrhage in mice: injection of autologous blood or bacterial collagenase. J Vis Exp. 2012;(67):e4289. doi:10.3791/4289.

  9. Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol. 1971;30:536–50.

    Article  CAS  PubMed  Google Scholar 

  10. Sutherland GR, Auer RN. Primary intracerebral hemorrhage. J Clin Neurosci. 2006;13:511–7.

    Article  PubMed  Google Scholar 

  11. Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31.

    Article  CAS  PubMed  Google Scholar 

  12. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, et al. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344:1450–60.

    Article  CAS  PubMed  Google Scholar 

  13. Intiso D, Stampatore P, Zarrelli MM, Guerra GL, Arpaia G, et al. Incidence of first-ever ischemic and hemorrhagic stroke in a well-defined community of southern Italy, 1993–1995. Eur J Neurol. 2003;10:559–65.

    Article  CAS  PubMed  Google Scholar 

  14. Poon MT, Fonville AF, Al-Shahi Salman R. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85:660–7.

    Article  PubMed  Google Scholar 

  15. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8:355–69.

    Article  PubMed  Google Scholar 

  16. Brouwers HB, Greenberg SM. Hematoma expansion following acute intracerebral hemorrhage. Cerebrovasc Dis. 2013;35:195–201.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Aguilar MI, Brott TG. Update in intracerebral hemorrhage. Neurohospitalist. 2011;1:148–59.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71:158–64.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24:987–93.

    Article  CAS  PubMed  Google Scholar 

  20. Flaherty ML, Haverbusch M, Sekar P, Kissela B, Kleindorfer D, et al. Long-term mortality after intracerebral hemorrhage. Neurology. 2006;66:1182–6.

    Article  CAS  PubMed  Google Scholar 

  21. Dowlatshahi D, Smith EE, Flaherty ML, Ali M, Lyden P, et al. Small intracerebral haemorrhages are associated with less haematoma expansion and better outcomes. Int J Stroke. 2011;6:201–6.

    Article  PubMed  Google Scholar 

  22. Mayer SA. Ultra-early hemostatic therapy for intracerebral hemorrhage. Stroke. 2003;34:224–9.

    Article  PubMed  Google Scholar 

  23. LoPresti MA, Bruce SS, Camacho E, Kunchala S, Dubois BG, et al. Hematoma volume as the major determinant of outcomes after intracerebral hemorrhage. J Neurol Sci. 2014;345:3–7.

    Article  PubMed  Google Scholar 

  24. Delcourt C, Huang Y, Arima H, Chalmers J, Davis SM, et al. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79:314–9.

    Article  PubMed  Google Scholar 

  25. Takebayashi S, Kaneko M. Electron microscopic studies of ruptured arteries in hypertensive intracerebral hemorrhage. Stroke. 1983;14:28–36.

    Article  CAS  PubMed  Google Scholar 

  26. Masawa N, Yoshida Y, Yamada T, Joshita T, Sato S, et al. Morphometry of structural preservation of tunica media in aged and hypertensive human intracerebral arteries. Stroke. 1994;25:122–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ooneda G. Pathology of stroke. Jpn Circ J. 1986;50:1224–34.

    Article  CAS  PubMed  Google Scholar 

  28. Russell RW. How does blood-pressure cause stroke? Lancet. 1975;2:1283–5.

    Article  CAS  PubMed  Google Scholar 

  29. Fisher CM. Hypertensive cerebral hemorrhage. Demonstration of the source of bleeding. J Neuropathol Exp Neurol. 2003;62:104–7.

    PubMed  Google Scholar 

  30. Rosand J, Muzikansky A, Kumar A, Wisco JJ, Smith EE, et al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol. 2005;58:459–62.

    Article  PubMed  Google Scholar 

  31. Frackowiak J, Zoltowska A, Wisniewski HM. Non-fibrillar beta-amyloid protein is associated with smooth muscle cells of vessel walls in Alzheimer disease. J Neuropathol Exp Neurol. 1994;53:637–45.

    Article  CAS  PubMed  Google Scholar 

  32. Wisniewski HM, Wegiel J, Vorbrodt AW, Mazur-Kolecka B, Frackowiak J. Role of perivascular cells and myocytes in vascular amyloidosis. Ann N Y Acad Sci. 2000;903:6–18.

    Article  CAS  PubMed  Google Scholar 

  33. Revesz T, Holton JL, Lashley T, Plant G, Rostagno A, et al. Sporadic and familial cerebral amyloid angiopathies. Brain Pathol. 2002;12:343–57.

    Article  PubMed  Google Scholar 

  34. Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a systematic review. J Clin Neurol. 2011;7:1–9.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Vonsattel JP, Myers RH, Hedley-Whyte ET, Ropper AH, Bird ED, et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol. 1991;30:637–49.

    Article  CAS  PubMed  Google Scholar 

  36. Edlow BL, Bove RM, Viswanathan A, Greenberg SM, Silverman SB. The pattern and pace of hyperacute hemorrhage expansion. Neurocrit Care. 2012;17:250–4.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Brott T, Broderick J, Kothari R, Barsan W, Tomsick T, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:1–5.

    Article  CAS  PubMed  Google Scholar 

  38. Liu R, Huynh TJ, Huang Y, Ramsay D, Hynynen K, et al. Modeling the Pattern of Contrast Extravasation in Acute Intracerebral Hemorrhage Using Dynamic Contrast-Enhanced MR. Neurocrit Care. 2015;22:320–4.

    Article  CAS  PubMed  Google Scholar 

  39. Rodriguez-Luna D, Rubiera M, Ribo M, Coscojuela P, Pineiro S, et al. Ultraearly hematoma growth predicts poor outcome after acute intracerebral hemorrhage. Neurology. 2011;77:1599–604.

    Article  CAS  PubMed  Google Scholar 

  40. Greenberg CH, Frosch MP, Goldstein JN, Rosand J, Greenberg SM. Modeling intracerebral hemorrhage growth and response to anticoagulation. PLoS One. 2012;7, e48458.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Barras CD, Tress BM, Christensen S, MacGregor L, Collins M, et al. Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke. 2009;40:1325–31.

    Article  PubMed  Google Scholar 

  42. Boulouis G, Dumas A, Betensky RA, Brouwers HB, Fotiadis P, et al. Anatomic pattern of intracerebral hemorrhage expansion: relation to CT angiography spot sign and hematoma center. Stroke. 2014;45:1154–6.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Brouwers HB, Falcone GJ, McNamara KA, Ayres AM, Oleinik A, et al. CTA spot sign predicts hematoma expansion in patients with delayed presentation after intracerebral hemorrhage. Neurocrit Care. 2012;17:421–8.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Romero JM, Heit JJ, Delgado Almandoz JE, Goldstein JN, Lu J, et al. Spot sign score predicts rapid bleeding in spontaneous intracerebral hemorrhage. Emerg Radiol. 2012;19:195–202.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Komiyama M, Yasui T, Tamura K, Nagata Y, Fu Y, et al. Simultaneous bleeding from multiple lenticulostriate arteries in hypertensive intracerebral haemorrhage. Neuroradiology. 1995;37:129–30.

    Article  CAS  PubMed  Google Scholar 

  46. Greenberg SM, Nandigam RN, Delgado P, Betensky RA, Rosand J, et al. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke. 2009;40:2382–6.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Ma Q, Khatibi NH, Chen H, Tang J, Zhang JH. History of preclinical models of intracerebral hemorrhage. Acta Neurochir Suppl. 2011;111:3–8.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Kirkman MA, Allan SM, Parry-Jones AR. Experimental intracerebral hemorrhage: avoiding pitfalls in translational research. J Cereb Blood Flow Metab. 2011;31:2135–51.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990;21:801–7.

    Article  CAS  PubMed  Google Scholar 

  50. Won SY, Schlunk F, Dinkel J, Karatas H, Leung W, et al. Imaging of contrast medium extravasation in anticoagulation-associated intracerebral hemorrhage with dual-energy computed tomography. Stroke. 2013;44:2883–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Schlunk F, Schulz E, Lauer A, Yigitkanli K, Pfeilschifter W, et al. Warfarin Pretreatment Reduces Cell Death and MMP-9 Activity in Experimental Intracerebral Hemorrhage. Transl Stroke Res. 2014;6(2):133–9. doi:10.1007/s12975-014-0377-3.

  52. Lauer A, Cianchetti FA, Van Cott EM, Schlunk F, Schulz E, et al. Anticoagulation with the oral direct thrombin inhibitor dabigatran does not enlarge hematoma volume in experimental intracerebral hemorrhage. Circulation. 2011;124:1654–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Foerch C, Arai K, Jin G, Park KP, Pallast S, et al. Experimental model of warfarin-associated intracerebral hemorrhage. Stroke. 2008;39:3397–404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Schlunk F, Van Cott EM, Hayakawa K, Pfeilschifter W, Lo EH, et al. Recombinant activated coagulation factor VII and prothrombin complex concentrates are equally effective in reducing hematoma volume in experimental warfarin-associated intracerebral hemorrhage. Stroke. 2012;43:246–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Lei B, Sheng H, Wang H, Lascola CD, Warner DS, et al. Intrastriatal injection of autologous blood or clostridial collagenase as murine models of intracerebral hemorrhage. J Vis Exp. 2014. doi:10.3791/51439.

  56. Ni W, Okauchi M, Hatakeyama T, Gu Y, Keep RF, et al. Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats. Exp Neurol. 2015. doi:10.1016/j.expneurol.2015.02.035.

  57. Li G, Fan RM, Chen JL, Wang CM, Zeng YC, et al. Neuroprotective effects of argatroban and C5a receptor antagonist (PMX53) following intracerebral haemorrhage. Clin Exp Immunol. 2014;175:285–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Marinkovic I, Strbian D, Mattila OS, Abo-Ramadan U, Tatlisumak T. A novel combined model of intracerebral and intraventricular hemorrhage using autologous blood-injection in rats. Neuroscience. 2014;272:286–94.

    Article  CAS  PubMed  Google Scholar 

  59. Liu J, Gao BB, Clermont AC, Blair P, Chilcote TJ, et al. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat Med. 2011;17:206–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. James ML, Warner DS, Laskowitz DT. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care. 2008;9:139–52.

    Article  PubMed  Google Scholar 

  61. Wang J, Fields J, Dore S. The development of an improved preclinical mouse model of intracerebral hemorrhage using double infusion of autologous whole blood. Brain Res. 2008;1222:214–21.

    Article  CAS  PubMed  Google Scholar 

  62. Aviv RI, Huynh T, Huang Y, Ramsay D, Van Slyke P, et al. An in vivo, MRI-integrated real-time model of active contrast extravasation in acute intracerebral hemorrhage. AJNR Am J Neuroradiol. 2014;35:1693–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Frieder Schlunk and Steven Greenberg declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Greenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlunk, F., Greenberg, S.M. The Pathophysiology of Intracerebral Hemorrhage Formation and Expansion. Transl. Stroke Res. 6, 257–263 (2015). https://doi.org/10.1007/s12975-015-0410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0410-1

Keywords

Navigation