Skip to main content

Advertisement

Log in

Sequential Therapy with Minocycline and Candesartan Improves Long-Term Recovery After Experimental Stroke

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Minocycline and candesartan have both shown promise as candidate therapeutics in ischemic stroke, with multiple, and somewhat contrasting, molecular mechanisms. Minocycline is an anti-inflammatory, antioxidant, and anti-apoptotic agent and a known inhibitor of matrix metalloproteinases (MMPs). Yet, minocycline exerts antiangiogenic effects both in vivo and in vitro. Candesartan promotes angiogenesis and activates MMPs. Aligning these therapies with the dynamic processes of injury and repair after ischemia is likely to improve success of treatment. In this study, we hypothesize that opposing actions of minocycline and candesartan on angiogenesis, when administered simultaneously, will reduce the benefit of candesartan treatment. Therefore, we propose a sequential combination treatment regimen to yield a better outcome and preserve the proangiogenic potential of candesartan. In vitro angiogenesis was assessed using human brain endothelial cells. In vivo, Wistar rats subjected to 90-min middle cerebral artery occlusion (MCAO) were randomized into four groups: saline, candesartan, minocycline, and sequential combination of minocycline and candesartan. Neurobehavioral tests were performed 1, 3, 7, and 14 days after stroke. Brain tissue was collected on day 14 for assessment of infarct size and vascular density. Minocycline, when added simultaneously, decreased the proangiogenic effect of candesartan treatment in vitro. Sequential treatment, however, preserved the proangiogenic potential of candesartan both in vivo and in vitro, improved neurobehavioral outcome, and reduced infarct size. Sequential combination therapy with minocycline and candesartan improves long-term recovery and maintains candesartan’s proangiogenic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table 1

Similar content being viewed by others

Abbreviations

ARBs:

Angiotensin II type-1 receptor blockers

hCMECs:

Human cerebral microvascular endothelial cells

MCAO:

Middle cerebral artery occlusion

MMPs:

Matrix metalloproteinases

VEGF:

Vascular endothelial growth factor

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292. doi:10.1161/01.cir.0000441139.02102.80.

    Article  PubMed  Google Scholar 

  2. Ramaiah SS, Yan B. Low-dose tissue plasminogen activator and standard-dose tissue plasminogen activator in acute ischemic stroke in Asian populations: a review. Cerebrovasc Dis. 2013;36(3):161–6. doi:10.1159/000354162.

    Article  CAS  PubMed  Google Scholar 

  3. Ishrat T, Soliman S, Guan W, Saler M, Fagan SC. Vascular protection to increase the safety of tissue plasminogen activator for stroke. Curr Pharm Des. 2012;18(25):3677–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Navaratna D, Guo S, Arai K, Lo EH. Mechanisms and targets for angiogenic therapy after stroke. Cell Adhes Migr. 2009;3(2):216–23.

    Article  Google Scholar 

  5. Chopp M, Zhang ZG, Jiang Q. Neurogenesis, angiogenesis, and MRI indices of functional recovery from stroke. Stroke J Cereb Circ. 2007;38(2 Suppl):827–31. doi:10.1161/01.STR.0000250235.80253.e9.

    Article  Google Scholar 

  6. Xiong Y, Mahmood A, Chopp M. Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs. 2010;11(3):298–308.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Hayashi T, Noshita N, Sugawara T, Chan PH. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab. 2003;23(2):166–80.

    Article  CAS  PubMed  Google Scholar 

  8. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Some remarks on the growth-rate and angiogenesis of microvessels in ischemic stroke. Morphometric and immunocytochemical studies. Patol Pol. 1993;44(4):203–9.

    CAS  PubMed  Google Scholar 

  9. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke J Cereb Circ. 1994;25(9):1794–8.

    Article  CAS  Google Scholar 

  10. Brumm AJ, Carmichael ST. Not just a rush of blood to the head. Nat Med. 2012;18(11):1609–10. doi:10.1038/nm.2990.

    Article  CAS  PubMed  Google Scholar 

  11. Manoonkitiwongsa PS, Jackson-Friedman C, McMillan PJ, Schultz RL, Lyden PD. Angiogenesis after stroke is correlated with increased numbers of macrophages: the clean-up hypothesis. J Cereb Blood Flow Metab. 2001;21(10):1223–31. doi:10.1097/00004647-200110000-00011.

    Article  CAS  PubMed  Google Scholar 

  12. Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci. 2006;26(50):13007–16. doi:10.1523/JNEUROSCI.4323-06.2006.

    Article  CAS  PubMed  Google Scholar 

  13. Simao F, Pagnussat AS, Seo JH, Navaratna D, Leung W, Lok J, et al. Pro-angiogenic effects of resveratrol in brain endothelial cells: nitric oxide-mediated regulation of vascular endothelial growth factor and metalloproteinases. J Cereb Blood Flow Metab. 2012;32(5):884–95. doi:10.1038/jcbfm.2012.2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Guo S, Arai K, Stins MF, Chuang DM, Lo EH. Lithium upregulates vascular endothelial growth factor in brain endothelial cells and astrocytes. Stroke J Cereb Circ. 2009;40(2):652–5. doi:10.1161/STROKEAHA.108.524504.

    Article  CAS  Google Scholar 

  15. Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke J Cereb Circ. 2004;35(7):1732–7. doi:10.1161/01.STR.0000132196.49028.a4.

    Article  CAS  Google Scholar 

  16. Fagan SC, Hess DC, Hohnadel EJ, Pollock DM, Ergul A. Targets for vascular protection after acute ischemic stroke. Stroke J Cereb Circ. 2004;35(9):2220–5. doi:10.1161/01.STR.0000138023.60272.9e.

    Article  CAS  Google Scholar 

  17. Hermann DM, Zechariah A. Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab. 2009;29(10):1620–43. doi:10.1038/jcbfm.2009.100.

    Article  CAS  PubMed  Google Scholar 

  18. Westhoff MA, Faham N, Marx D, Nonnenmacher L, Jennewein C, Enzenmuller S, et al. Sequential dosing in chemosensitization: targeting the PI3K/Akt/mTOR pathway in neuroblastoma. PLoS One. 2013;8(12):e83128. doi:10.1371/journal.pone.0083128.

    Article  PubMed Central  PubMed  Google Scholar 

  19. De Francesco V, Hassan C, Ridola L, Giorgio F, Ierardi E, Zullo A. Sequential, concomitant and hybrid first-line therapies for H. pylori eradication: a prospective, randomized study. J Med Microbiol. 2014. doi:10.1099/jmm.0.072322-0.

    Google Scholar 

  20. Liao TV, Forehand CC, Hess DC, Fagan SC. Minocycline repurposing in critical illness: focus on stroke. Curr Top Med Chem. 2013;13(18):2283–90.

    Article  CAS  PubMed  Google Scholar 

  21. Tamargo RJ, Bok RA, Brem H. Angiogenesis inhibition by minocycline. Cancer Res. 1991;51(2):672–5.

    CAS  PubMed  Google Scholar 

  22. Gilbertson-Beadling S, Powers EA, Stamp-Cole M, Scott PS, Wallace TL, Copeland J, et al. The tetracycline analogs minocycline and doxycycline inhibit angiogenesis in vitro by a non-metalloproteinase-dependent mechanism. Cancer Chemother Pharmacol. 1995;36(5):418–24.

    Article  CAS  PubMed  Google Scholar 

  23. Yao JS, Chen Y, Zhai W, Xu K, Young WL, Yang GY. Minocycline exerts multiple inhibitory effects on vascular endothelial growth factor-induced smooth muscle cell migration: the role of ERK1/2, PI3K, and matrix metalloproteinases. Circ Res. 2004;95(4):364–71. doi:10.1161/01.RES.0000138581.04174.2f.

    Article  CAS  PubMed  Google Scholar 

  24. Jung HJ, Seo I, Jha BK, Suh SI, Suh MH, Baek WK. Minocycline inhibits angiogenesis in vitro through the translational suppression of HIF-1alpha. Arch Biochem Biophys. 2014;545C:74–82. doi:10.1016/j.abb.2013.12.023.

    Article  Google Scholar 

  25. He J, Zhang Y, Xu T, Zhao Q, Wang D, Chen CS, et al. Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: the CATIS randomized clinical trial. JAMA J Am Med Assoc. 2014;311(5):479–89. doi:10.1001/jama.2013.282543.

    Article  CAS  Google Scholar 

  26. Engelhorn T, Goerike S, Doerfler A, Okorn C, Forsting M, Heusch G, et al. The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurologic outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab. 2004;24(4):467–74. doi:10.1097/00004647-200404000-00012.

    Article  PubMed  Google Scholar 

  27. Brdon J, Kaiser S, Hagemann F, Zhao Y, Culman J, Gohlke P. Comparison between early and delayed systemic treatment with candesartan of rats after ischaemic stroke. J Hypertens. 2007;25(1):187–96. doi:10.1097/01.hjh.0000254376.80864.d3.

    Article  CAS  PubMed  Google Scholar 

  28. Guan W, Somanath PR, Kozak A, Goc A, El-Remessy AB, Ergul A, et al. Vascular protection by angiotensin receptor antagonism involves differential VEGF expression in both hemispheres after experimental stroke. PLoS One. 2011;6(9):e24551. doi:10.1371/journal.pone.0024551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kozak A, Ergul A, El-Remessy AB, Johnson MH, Machado LS, Elewa HF, et al. Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke. Stroke J Cereb Circ. 2009;40(5):1870–6. doi:10.1161/STROKEAHA.108.537225.

    Article  CAS  Google Scholar 

  30. Sandset EC, Bath PM, Boysen G, Jatuzis D, Korv J, Luders S, et al. The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet. 2011;377(9767):741–50. doi:10.1016/S0140-6736(11)60104-9.

    Article  CAS  PubMed  Google Scholar 

  31. Jauch EC, Saver JL, Adams Jr HP, Bruno A, Connors JJ, Demaerschalk BM, et al. Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke J Cereb Circ. 2013;44(3):870–947. doi:10.1161/STR.0b013e318284056a.

    Article  Google Scholar 

  32. Saivin S, Houin G. Clinical pharmacokinetics of doxycycline and minocycline. Clin Pharmacokinet. 1988;15(6):355–66. doi:10.2165/00003088-198815060-00001.

    Article  CAS  PubMed  Google Scholar 

  33. Soliman S, El-Remessy A, Ishrat T, Pillai A, Somanath P, Ergul A, et al. Candesartan induces a prolonged proangiogenic effect and augments endothelium-mediated neuroprotection after oxygen and glucose deprivation: role of VEGF-A and B. J Pharmacol Exp Ther. 2014. doi:10.1124/jpet.113.212613.

    PubMed Central  PubMed  Google Scholar 

  34. Matsukawa N, Yasuhara T, Hara K, Xu L, Maki M, Yu G, et al. Therapeutic targets and limits of minocycline neuroprotection in experimental ischemic stroke. BMC Neurosci. 2009;10:126. doi:10.1186/1471-2202-10-126.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Ishrat T, Pillai B, Soliman S, Fouda AY, Kozak A, Johnson MH, et al. Low-dose candesartan enhances molecular mediators of neuroplasticity and subsequent functional recovery after ischemic stroke in rats. Mol Neurobiol. 2014. doi:10.1007/s12035-014-8830-6.

    Google Scholar 

  36. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke J Cereb Circ. 1986;17(3):472–6.

    Article  CAS  Google Scholar 

  37. Watanabe T, Okuda Y, Nonoguchi N, Zhao MZ, Kajimoto Y, Furutama D, et al. Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2004;24(11):1205–13. doi:10.1097/01.WCB.0000136525.75839.41.

    Article  CAS  PubMed  Google Scholar 

  38. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke J Cereb Circ. 2001;32(4):1005–11.

    Article  CAS  Google Scholar 

  39. Machado LS, Kozak A, Ergul A, Hess DC, Borlongan CV, Fagan SC. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci. 2006;7:56. doi:10.1186/1471-2202-7-56.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Alhusban A, Kozak A, Ergul A, Fagan SC. AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediator. J Pharmacol Exp Ther. 2013;344(2):348–59. doi:10.1124/jpet.112.197483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Garrido-Mesa N, Zarzuelo A, Galvez J. What is behind the non-antibiotic properties of minocycline? Pharmacol Res. 2013;67(1):18–30. doi:10.1016/j.phrs.2012.10.006.

    Article  CAS  PubMed  Google Scholar 

  42. Xu L, Fagan SC, Waller JL, Edwards D, Borlongan CV, Zheng J, et al. Low dose intravenous minocycline is neuroprotective after middle cerebral artery occlusion-reperfusion in rats. BMC Neurol. 2004;4:7. doi:10.1186/1471-2377-4-7.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Wang CX, Yang T, Shuaib A. Effects of minocycline alone and in combination with mild hypothermia in embolic stroke. Brain Res. 2003;963(1–2):327–9.

    Article  CAS  PubMed  Google Scholar 

  44. Wu J, Yang S, Hua Y, Liu W, Keep RF, Xi G. Minocycline attenuates brain edema, brain atrophy and neurological deficits after intracerebral hemorrhage. Acta Neurochir Suppl. 2010;106:147–50. doi:10.1007/978-3-211-98811-4_26.

    Article  CAS  PubMed  Google Scholar 

  45. Forder JP, Munzenmaier DH, Greene AS. Angiogenic protection from focal ischemia with angiotensin II type 1 receptor blockade in the rat. Am J Physiol Heart Circ Physiol. 2005;288(4):H1989–96. doi:10.1152/ajpheart.00839.2004.

    Article  CAS  PubMed  Google Scholar 

  46. Munzenmaier DH, Greene AS. Chronic angiotensin II AT1 receptor blockade increases cerebral cortical microvessel density. Am J Physiol Heart Circ Physiol. 2006;290(2):H512–6. doi:10.1152/ajpheart.01136.2004.

    Article  CAS  PubMed  Google Scholar 

  47. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005;169(4):681–91. doi:10.1083/jcb.200409115.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Ebrahem Q, Chaurasia SS, Vasanji A, Qi JH, Klenotic PA, Cutler A, et al. Cross-talk between vascular endothelial growth factor and matrix metalloproteinases in the induction of neovascularization in vivo. Am J Pathol. 2010;176(1):496–503. doi:10.2353/ajpath.2010.080642.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hollborn M, Stathopoulos C, Steffen A, Wiedemann P, Kohen L, Bringmann A. Positive feedback regulation between MMP-9 and VEGF in human RPE cells. Invest Ophthalmol Vis Sci. 2007;48(9):4360–7. doi:10.1167/iovs.06-1234.

    Article  PubMed  Google Scholar 

  50. Chetty C, Lakka SS, Bhoopathi P, Rao JS. MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer J Int Cancer. 2010;127(5):1081–95. doi:10.1002/ijc.25134.

    Article  CAS  Google Scholar 

  51. Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood–brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis. 2010;38(3):376–85. doi:10.1016/j.nbd.2010.03.008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12(4):441–5. doi:10.1038/nm1387.

    Article  CAS  PubMed  Google Scholar 

  53. Yang YR, Salayandia VM, Estrata EY, Thompson JF, Rosenberg GA, Yang Y. Abstract W MP42: early treatment with minocycline promotes neurovascular remodeling of tight junctions facilitating recovery after stroke in rat brain. Stroke J Cereb Circ. 2014;45 Suppl 1:AWMP42.

    Google Scholar 

Download references

Compliance with Ethical Standards

Funding Source

This study was funded by the National Institute of Health (R01-NS063965) and Veterans Affairs Merit Award (BX000891) to SCF and the American Heart Association-Southeast Affiliate (12PRE12030197) to SS.

Conflict of Interest

Authors declare no conflict of interest.

Ethical Approval

All applicable institutional guidelines for the care and use of animals were followed. All experimental protocols were approved by the Care of Experimental Animal Committee of Georgia Regents University/Institutional Animal Care and Use Committee (IACUC) of the Veterans Affairs Medical Center. This article does not contain any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan C. Fagan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soliman, S., Ishrat, T., Fouda, A.Y. et al. Sequential Therapy with Minocycline and Candesartan Improves Long-Term Recovery After Experimental Stroke. Transl. Stroke Res. 6, 309–322 (2015). https://doi.org/10.1007/s12975-015-0408-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-015-0408-8

Keywords

Navigation