Skip to main content
Log in

Efficient and Cost-effective Photoelectrochemical Degradation of Dyes in Wastewater over an Exfoliated Graphite-MoO3 Nanocomposite Electrode

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Herein, we prepared hexagonal MoO3 (h-MoO3) nanorods by homogenous co-precipitation and utilized them to fabricate a composite h-MoO3-exfoliated graphite (EG) electrode. The above composite was characterized by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, and UV-Vis spectroscopy, and used for the degradation of cationic (methylene blue, MB) and anionic (methyl red, MR) dyes in synthetic wastewater. The efficiency of this degradation was assessed by UV-Vis spectroscopy and electrochemical techniques. Good dispersion of h-MoO3 in EG decreased the electron-hole recombination rate and enhanced the photon absorption efficiency of the EG-MoO3 electrode, which therefore exhibited a higher dye photodegradation efficiency than the bare EG one. Specifically, the efficiencies of 180-min MB photodegradation over EG and EG-MoO3 electrodes were 66.9 and 88.55%, respectively, whereas the corresponding values for MR were 68.0 and 92.22%, respectively, i.e., MR was degraded more effectively than MB. Furthermore, photoelectrochemical oxidation was shown to be more efficient than purely photolytic and electrochemical oxidation, which, together with the ease of preparation, low cost, and high photoactivity/stability of the fabricated nanocomposite electrode makes it potentially suitable for industrial wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Khajeh, S. Laurent, K. Dastafkan, Nanoadsorbents: Classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev. 113, 7728−7768 (2013)

    Article  CAS  Google Scholar 

  2. N. Kumar, S.S. Ray, J.C. Ngila, Ionic liquid-assisted synthesis of Ag/Ag2Te nanocrystals via a hydrothermal route for enhanced photocatalytic performance. New J. Chem. 41(23), 14618–14626 (2017)

    Article  CAS  Google Scholar 

  3. N. Kumar, L. Reddy, J.C. Ngila, V. Parashar, Controlled synthesis of microsheets of ZnAl layered double hydroxides hexagonal nanoplates for efficient removal of Cr(VI) ions and anionic dye from water. J. Environ. Chem. Eng. 5, 1718−1731 (2017)

    Google Scholar 

  4. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51−59 (1999)

    Article  Google Scholar 

  5. Q. Gui, Z. Xu, H. Zhang, C. Cheng, X. Zhu, M. Yin, Enhanced photoelectrochemical water splitting performance of anodic TiO2 nanotube arrays by surface passivation. ACS Appl. Mater. Interfaces 6(19), 17053–17058 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. C.A. Martinez-Huitle, S. Ferro, Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev. 35, 1324−1340 (2006)

    Article  Google Scholar 

  7. A. Asghar, A.A.A. Raman, W.M.A.W. Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. J. Clean. Prod. 87, 826−838 (2015)

    Article  CAS  Google Scholar 

  8. H. Zhang, G. Chen, D.W. Bahnemann, Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 19(29), 5089–5121 (2009)

    Article  CAS  Google Scholar 

  9. J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 53, 115−129 (1999)

    Article  Google Scholar 

  10. A. Khademi, A.Z. Moshfegh, Growth and field emission study of molybdenum oxide nanostars. J Phy. Chem. C 113(44), 19298–19304 (2009)

    Article  CAS  Google Scholar 

  11. J. Wang, S. Dong, C. Yu, X. Han, J. Guo, J. Sun, An efficient MoO3 catalyst for in-practical degradation of dye wastewater under room conditions. Catal. Commun. 92, 100−104 (2017)

    Article  CAS  Google Scholar 

  12. X. Yu, X. Cheng, Preparation and photoelectrochemical performance of expanded graphite/TiO2 composite. Electrochim. Acta 137, 668−675 (2014)

    Article  CAS  Google Scholar 

  13. O.M. Ama, N. Mabuba, O.A. Arotiba, Synthesis, characterization, and application of exfoliated graphite/zirconium nanocomposite electrode for the photoelectrochemical degradation of organic dye in water. Electrocatalysis 6, 390−397 (2015)

    Article  CAS  Google Scholar 

  14. S. Verma, H.P. Mungse, N. Kumar, S. Choudhary, S.L. Jain, B. Sain, Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem. Commun. 47(47), 12673–12675 (2011)

    Article  CAS  Google Scholar 

  15. W. Han, L. Ren, X. Qi, Y. Liu, X. Wei, Z. Huang, J. Zhong, Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Appl. Surf. Sci. 299, 12−18 (2014)

    Article  CAS  Google Scholar 

  16. O.M. Ama, O.A. Arotiba, Exfoliated graphite/titanium dioxide for enhanced photoelectrochemical degradation of methylene blue dye under simulated visible light irradiation. J. Electroanal. Chem. 803, 157−164 (2017)

    Article  CAS  Google Scholar 

  17. N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, J.C. Ngila, Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: their cytotoxicity towards lung and breast cancer cells. Appl. Surf. Sci. 396, 8−18 (2017)

    Google Scholar 

  18. A. Chithambararaj, N. Sanjini, S. Velmathi, A.C. Bose, Preparation of h-MoO3 and α-MoO3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation. Phys. Chem. Chem. Phys. 15(35), 14761–14769 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. B. Ntsendwana, B.B. Mamba, S. Sampath, O.A. Arotiba, Electrochemical detection of bisphenol A using graphene modified glassy carbon electrode. Int. J. Electrochem. Sci. 7, 3501–3512 (2012)

    CAS  Google Scholar 

  20. A. Das, B. Chakraborty, A. Sood, Raman spectroscopy of graphene on different substrates and influence of defects. Bull. Mater. Sci. 31, 579−584 (2008)

    Google Scholar 

  21. Q. Lai, S. Zhu, X. Luo, M. Zou, S. Huang, Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv. 2, 032146 (2012)

    Article  CAS  Google Scholar 

  22. Z. Shen, G. Chen, Y. Yu, Q. Wang, C. Zhou, L. Hao, Y. Li, L. Heb, M. Rende, Sonochemistry synthesis of nanocrystals embedded in a MoO3–CdS core–shell photocatalyst with enhanced hydrogen production and photodegradation. J. Mater. Chem. 22(37), 19646–19651 (2012)

  23. E.H. Umukoro, M.G. Peleyeju, J.C. Ngila, O.A. Arotiba, Photoelectrochemical degradation of orange II dye in wastewater at a silver–zinc oxide/reduced graphene oxide nanocomposite photoanode. RSC Adv. 6(58), 52868–52877 (2016)

    Article  CAS  Google Scholar 

  24. P. Wang, Y. Tang, Z. Dong, Z. Chen, T.T. Lim, Ag–AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. J. Mater. Chem. A 1(15), 4718–4727 (2013)

    Article  CAS  Google Scholar 

  25. E.H. Umukoro, G.P. Moses, C.J. Ngila, O.A. Arotiba, Towards wastewater treatment: photo-assisted electrochemical degradation of 2-nitrophenol and orange II dye at a tungsten trioxide-exfoliated graphite composite electrode. Chem. Eng. J. 317, 290−301 (2017)

    Article  CAS  Google Scholar 

  26. M.G. Peleyeju, E.H. Umukoro, J.O. Babalola, O.A. Arotiba, Electrochemical degradation of an anthraquinonic dye on an expanded graphite-diamond composite electrode. Electrocatalysis 2, 132–139 (2016)

    Article  CAS  Google Scholar 

  27. E.H. Umukoro, M.G. Peleyeju, J.C. Ngila, O.A. Arotiba, Photocatalytic degradation of acid blue 74 in water using Ag–Ag2O–ZnO nanostructures anchored on graphene oxide. Solid State Sci. 51, 66−73 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

The study is financially supported by the National Centre for Nano-structured Materials, CSIR Pretoria, PDRF University of Johannesburg and National Research Foundation, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onoyivwe Monday Ama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ama, O.M., Kumar, N., Adams, F.V. et al. Efficient and Cost-effective Photoelectrochemical Degradation of Dyes in Wastewater over an Exfoliated Graphite-MoO3 Nanocomposite Electrode. Electrocatalysis 9, 623–631 (2018). https://doi.org/10.1007/s12678-018-0471-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0471-5

Keywords

Navigation