Skip to main content
Log in

Microwave-Irradiation Polyol Synthesis of PVP-Protected Pt–Ni Electrocatalysts for Methanol Oxidation Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Bimetallic Pt–Ni nanoparticles were synthesized for use as electrocatalysts for the methanol oxidation reaction using a cost-effective microwave-irradiation synthesis procedure that offers precise temperature control. By varying the concentration of Ni in the Pt matrix, it was demonstrated that the electrocatalytic activity of the particles declined as the Ni content was increased, with a 50:50 Pt:Ni mixture giving the best performance. This in turn showed that the Pt electrocatalytically active surface area was affected by the incorporation of Ni atoms into the Pt lattice. No further calcination of the microwaved catalysts was required resulting in the synthesis of novel and highly active catalysts, which possessed higher activity than some commercially available Pt catalysts. The catalysts also exhibited good CO resistance and long-term stability behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Peng, H. Yang, Designer platinum: Control of shape, composiiton in alloy, nanostructure and electrocatalytic properties. Nano Today 4, 143–169 (2009)

    Article  CAS  Google Scholar 

  2. D. Wang, T. Xie, Y. Li, Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2(1), 30–46 (2009)

    Article  CAS  Google Scholar 

  3. E. Antolini, J. Perez, The renaissance of unsupported nanostructured catalysts for low-temperature fuel cells: From the size to the shape of metal nanostructures. J. Mater. Sci. 46, 4435–4457 (2011)

    Article  CAS  Google Scholar 

  4. W. Tu, H. Liu, Continuous synthesis of colloidal metal nanoclusters by microwave irradiation. Chem. Mater. 12, 564–567 (2000)

    Article  CAS  Google Scholar 

  5. Y.-J. Zhu et al., Microwave-assisted synthesis of single-crystalline Telluruin nanorods and nanowires in ionic liquids. Angew. Chem. 116, 1434–1438 (2004)

    Article  Google Scholar 

  6. E. Higuchi et al., Simple preparation of Au nanoparticles and their application to Au Core/Pt Shell catalysts for oxygen reduction reaction. Electrocatalysis 3(3), 274–283 (2012)

    Article  CAS  Google Scholar 

  7. S. Komarneni et al., Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18, 5959–5962 (2002)

    Article  CAS  Google Scholar 

  8. W. Yu, W. Tu, H. Liu, Synthesis of nanoscale platinum colloids by microwave dielectric heating. Langmuir 15, 6–9 (1999)

    Article  CAS  Google Scholar 

  9. D. Vollath, D.V. Szabó, The microwave plasma process—a versatile process to synthesize nanoparticulate materials. J. Nanopart. Res. 8, 417–428 (2006)

    Article  CAS  Google Scholar 

  10. A.N. Grace, K. Pandian, One pot synthesis of polymer protected Pt, Pd, Ag and Ru nanoparticles and nanoprisms under reflux and microwave mode of heating in glycerol—a comparative study. Mater. Chem. Phys. 104, 191–198 (2007)

    Article  CAS  Google Scholar 

  11. F. Bensebaa et al., Tunable platinum-ruthenium nanoparticle properties using microwave synthesis. J. Mater. Chem. 14, 3378–3384 (2004)

    Article  CAS  Google Scholar 

  12. W. Tu, H. Liu, Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. J. Mater. Chem. 10, 2207–2211 (2000)

    Article  CAS  Google Scholar 

  13. R.R. Adzic, Platinum monolayer electrocatalysts: Tunable activity, stability, and self-healing properties. Electrocatalysis 3(3), 163–169 (2012)

    Article  CAS  Google Scholar 

  14. K.-W. Park et al., Chemical and electronic effects of Ni in Pt–Ni and Pt–Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 106, 1869–1877 (2002)

    Article  CAS  Google Scholar 

  15. S.-H. Wu, D.-H. Chen, Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid Interface Sci. 259(2), 282–286 (2003)

    Article  CAS  Google Scholar 

  16. P.R. Makgwane, S.S. Ray, Efficient room temperature oxidation of cyclohexane over highly active hetero-mixed WO3/V2O5 oxide catalyst. Catal. Commun. 54, 118–123 (2014)

    Article  CAS  Google Scholar 

  17. N.R. Mathe et al., The effect of reducing agents on the electronic, magnetic and electrocatalytic properties of Thiol-capped Pt–co and Pt–Ni nanoparticles. Electrocatalysis 6, 274–285 (2015)

    Article  CAS  Google Scholar 

  18. A.S. Arico et al., An XPS study on oxidation states of Pt and its alloys with Co and Cr and its relevance to electroreduction of oxygen. Appl. Surf. Sci. 172, 33–40 (2001)

    Article  CAS  Google Scholar 

  19. J.W. Guo et al., Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim. Acta 51, 754–763 (2005)

    Article  CAS  Google Scholar 

  20. M.C. Biesinger et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. App. Surf. Sci. 257, 2717–2730 (2011)

    Article  CAS  Google Scholar 

  21. I.G. Casella, M.R. Guascito, M.G. Sannazzaro, Voltammetric and XPS investigations of nickel hydroxide electrochemically dispersed on gold surface electrodes. J. Electroanal. Chem. 462, 202–210 (1999)

    Article  CAS  Google Scholar 

  22. A.P. Grosvenor et al., New interpretations of XPS spectra of nickel and oxides. Surf. Sci. 600, 1771–1779 (2006)

    Article  CAS  Google Scholar 

  23. M.C. Biesinger et al., X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 41, 324–332 (2009)

    Article  CAS  Google Scholar 

  24. J.E. Castle, Use of “shake-up”satellites in photoelectron spectra for analysis of oxide layers on metals. Nat. Phys. Sci. 234, 93–95 (1971)

    Article  CAS  Google Scholar 

  25. K.S. Kim, N. Winograd, X-ray photoelectron spectroscopic binding energy shifts due to matrix in alloys and small supported metal nanoparticles. Chem. Phys. Lett. 30, 91–95 (1975)

    Article  CAS  Google Scholar 

  26. T. Vidakovic, M. Christov, K. Sundmacher, The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim. Acta 52, 5606–5613 (2007)

    Article  CAS  Google Scholar 

  27. L.-X. Ding et al., Hierachical Pd-Sn alloy nanosheet dendrites: An economical and highly active catalyst for ethanol electrooxidation. Nat Sci Rep 3, 1–7 (2013)

    Google Scholar 

  28. H.A. Gasteiger et al., CO electrooxidation on well-characterized Pt-Ru alloys. J. Phys. Chem. 98, 617–625 (1994)

    Article  CAS  Google Scholar 

  29. L.G.S. Pereira, V.A. Paganin, E.A. Ticianelli, Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim. Acta 54, 1992–1998 (2009)

    Article  CAS  Google Scholar 

  30. Q. Jiang et al., Promoting effect of Ni in PtNi bimetallic electrocatalysts for the methanol oxidation reaction in alakaline medium: Experimental and density functional theory studies. J. Phys. Chem. C 114, 19714–19722 (2010)

    Article  CAS  Google Scholar 

  31. Y. Xu et al., Composition-tunable Pt-Co alloy nanoparticle networks: Facile room-temperature synthesis and supportless electrocatalytic applications. Chem. Phys. Chem. 13, 2601–2609 (2012)

    Article  CAS  Google Scholar 

  32. F. Maillard et al., Effect of the structure of Pt-Ru/C particles on COad monolayer vibrational properties and electrooxidation kinetics. Electrochim. Acta 53, 811–822 (2007)

    Article  CAS  Google Scholar 

  33. J.S. Spendelow et al., Electrooxidation of adsorbed CO on Pt(111) and Pt(111)/Ru in alkaline media and comparison with results from acidic media. J. Electroanal. Chem. 568, 215–224 (2004)

    Article  CAS  Google Scholar 

  34. S. Sun et al., Single-atom catalysis using Pt–graphene achieved through atomic layer deposition. Sci. Rep. 3, 1775 (2013)

    Article  Google Scholar 

  35. T. Ramulifho et al., Fast microwave-assisted solvothermal synthesis of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: Pd-based bimetallic catalysts for ethanol oxidation in alkaline medium. Electrochim. Acta 59, 310–320 (2012)

    Article  CAS  Google Scholar 

  36. T.-Y. Yung, J.-Y. Lee, L.-K. Liu, Nanocomposite for methanol oxidation: Synthesis and characterization of cubic Pt nanoparticles on graphene sheets. Sci. Technol. Adv. Mater. 14, 035001 (2013)

    Article  Google Scholar 

  37. N.R. Mathe, M.R. Scriba, N.J. Coville, Methanol oxidation reaction activity of microwave-irradiated and heat-treated Pt–Co and Pt–Ni nano-electrocatalysts. Int. J. Hydrog. Energy 39(33), 18871–18881 (2014)

    Article  CAS  Google Scholar 

  38. H. Okamoto, W. Kon, Y. Mukouyama, Five current peaks in voltammograms for oxidation of formic acid, formaldehyde and methanol on platinum. J. Phys. Chem. B 109, 15659–15666 (2005)

    Article  CAS  Google Scholar 

  39. A. Murthy, A. Manthiram, Application of derivative voltammetry in the analysis of methanol oxidation reaction. J. Phys. Chem. C 116, 3827–3832 (2012)

    Article  CAS  Google Scholar 

  40. N.V. Long et al., Effets of heat treatment and poly(vinylpyrollidone) (PVP) polymer on electrocatalytic activity of polyhedral Pt nanoparticles towards methanol oxidation. Coll. Poly. Sci. 289, 1373–1386 (2011)

    Article  Google Scholar 

  41. T. Iwasita, in Handbook of Fuel Cells-Fundamentals, Technology and Applications, ed. by W. Vielstich, H. A. Gasteiger, A. Lamm. Methanol and CO Electrooxidation (John Wiley & Sons, Hoboken, 2003), pp. 603–624

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ntombizodwa R. Mathe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathe, N.R., Scriba, M.R., Rikhotso, R.S. et al. Microwave-Irradiation Polyol Synthesis of PVP-Protected Pt–Ni Electrocatalysts for Methanol Oxidation Reaction. Electrocatalysis 9, 388–399 (2018). https://doi.org/10.1007/s12678-017-0441-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0441-3

Keywords

Navigation