Skip to main content
Log in

Acetylene-Treated Titania Nanotube Arrays (TNAs) as Support for Oxygen Reduction Reaction (ORR) Platinum Thin Film Catalysts

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Platinum layers show higher specific oxygen reduction reaction (ORR) activities than nanoparticles, and smooth monolayers of platinum on polycrystalline gold have been achieved by electrodeposition from CO-saturated solutions. Since Pt monolayers are interesting catalytic systems, this methodology was attempted on acetylene-treated titania nanotubes (TNAs) with high conductivity. However, the investigation of the as-treated TNAs found that probably nanotubes with an oxygen-containing graphitic overlayer were formed. It was observed that deposition after partial oxidative removal of the overlayer led to very low ORR activities while deposition on the intact overlayer gave rise to the highest activities obtained in our research so far. This is attributed to a “tie-layer” effect, in which the carbon layer screens the negative effects of the underlying TiO2 layer. The interesting effects of the graphitic overlayer on the ORR activity of the Pt deposits on acetylene-treated TNAs offer a strategy to mitigate the unfavorable interactions of the Pt/TiO2 interface. However, the carbon layer in this study was found not to be stable upon potential cycling.

Only Gold Lets Platinum be Platinum: Monolayer amounts of Pt, electrodeposited under CO termination, so far, only show specific activities comparable to polycrystalline platinum if deposited on polycrystalline gold. TiO2 modifications as supports facilitate higher activities only at enhanced conductivities, which usually sacrifice their stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.C.K. Vesborg, T.F. Jaramillo, RSC Adv. 2, 7933 (2012)

    Article  CAS  Google Scholar 

  2. M.K. Debe, Nature 486, 43 (2012)

    Article  CAS  Google Scholar 

  3. J. Parrondo, T. Han, E. Niangar, C. Wang, N. Dale, K. Adjemian, V. Ramani, Proc. Natl. Acad. Sci. U. S. A. 111, 45 (2014)

    Article  CAS  Google Scholar 

  4. C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, Electrochem. Solid-State Lett. 8, A273 (2005)

    Article  CAS  Google Scholar 

  5. I. Harkness, J. Sharman, Fibrous Pt Catalysts Created with ALD-Deposited Pt on Oxide, Carbide or Nitride Surface Tie Layers Where the Pt Deposits Extend over the Surface in Large Contiguous Islands or as Continuous Film, (Novel Catalyst Structures Employing Pt at Ultra Low and Zero Loadings for Automotive MEAs (CATAPULT), 2014)

  6. S. Brimaud, R.J. Behm, J. Am. Chem. Soc. 135, 11716 (2013)

    Article  CAS  Google Scholar 

  7. K. Sasaki, Y. Mo, J.X. Wang, M. Balasubramanian, F. Uribe, J. McBreen, R.R. Adzic, Electrochim. Acta 48, 3841 (2003)

    Article  CAS  Google Scholar 

  8. A. Kongkanand, S. Kuwabata, J. Phys. Chem. B 109, 23190 (2005)

    Article  CAS  Google Scholar 

  9. S. Proch, K. Kodama, S. Yoshino, N. Takahashi, N. Kato, Y. Morimoto, Electrocatalysis 7, 362 (2016)

    Article  CAS  Google Scholar 

  10. W. Liao, W. Liao, S. Yau, J. Electrochem. Soc. 162, H767 (2015)

    Article  CAS  Google Scholar 

  11. S.-Y. Huang, P. Ganesan, S. Park, B.N. Popov, J. Am. Chem. Soc. 131, 13898 (2009)

    Article  CAS  Google Scholar 

  12. S.-Y. Huang, P. Ganesan, B.N. Popov, Appl. Catal., B 96, 224 (2010)

    Article  CAS  Google Scholar 

  13. Q. Du, J. Wu, H. Yang, ACS Catal. 4, 144 (2014)

    Article  CAS  Google Scholar 

  14. T. Arashi, J. Seo, K. Takanabe, J. Kubota, K. Domen, Catal. Today 233, 181 (2014)

    Article  CAS  Google Scholar 

  15. C. Zhang, H. Yu, Y. Li, W. Song, B. Yi, Z. Shao, Electrochim. Acta 80, 1 (2012)

    Article  CAS  Google Scholar 

  16. C. Zhang, H. Yu, Y. Li, Y. Gao, Y. Zhao, W. Song, Z. Shao, B. Yi, ChemSusChem 6, 659 (2013)

    Article  CAS  Google Scholar 

  17. S. Takakusagi, T. Ogawa, H. Uehara, H. Ariga, K.-i. Shimizu, K. Asakura, Chem. Lett. 43, 1797 (2014)

    Article  Google Scholar 

  18. M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K.-i. Ota, Electrochem. Solid-State Lett. 10, F1 (2007)

    Article  CAS  Google Scholar 

  19. B.E. Hayden, D. Pletcher, J.-P. Suchsland, L.J. Williams, Phys. Chem. Chem. Phys. 11, 9141 (2009)

    Article  CAS  Google Scholar 

  20. D. Schäfer, C. Mardare, A. Savan, M.D. Sanchez, B. Mei, W. Xia, M. Muhler, A. Ludwig, W. Schuhmann, Anal. Chem. 83, 1916 (2011)

    Article  Google Scholar 

  21. H. Li, Z. Chen, C.K. Tsang, Z. Li, X. Ran, C. Lee, B. Nie, L. Zheng, T. Hung, J. Lu, B. Pan, Y.Y. Li, J. Mater. Chem. A 2, 229 (2014)

    Article  CAS  Google Scholar 

  22. S. Proch, S. Yoshino, N. Kato, N. Takahashi, Y. Morimoto, Electrocatalysis 7, 451 (2016)

    Article  CAS  Google Scholar 

  23. G. Chen, S.R. Bare, T.E. Mallouk, J. Electrochem. Soc. 148, A1092 (2002)

    Article  Google Scholar 

  24. G. Chen, C.C. Waraksa, H. Cho, D.D. Macdonald, T.E. Mallouka, J. Electrochem. Soc. 150, E423 (2003)

    Article  CAS  Google Scholar 

  25. Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T. Shimada, T. Hasegawa, Appl. Phys. Lett. 86, 252101 (2005)

    Article  Google Scholar 

  26. Q. Wan, T.H. Wang, Appl. Phys. Lett. 88, 226102 (2006)

    Article  Google Scholar 

  27. B.L. García, R. Fuentes, J.W. Weidner, Electrochem. Solid-State Lett. 10, B108 (2007)

    Article  Google Scholar 

  28. M. Yang, H. Jha, N. Liu, P. Schmuki, J. Mater. Chem. 21, 15205 (2011)

    Article  CAS  Google Scholar 

  29. L. De Trizio, R. Buonsanti, A.M. Schimpf, A. Llordes, D.R. Gamelin, R. Simonutti, D.J. Milliron, Chem. Mater. 25, 3383 (2013)

    Article  CAS  Google Scholar 

  30. A. Sasahara, M. Tomitori, J. Phys. Chem. C 117, 17680 (2013)

    Article  CAS  Google Scholar 

  31. J. Biedrzycki, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, J. Phys. Chem. C 118, 8462 (2014)

    Article  CAS  Google Scholar 

  32. A. Yahya, S. Vivek, D. Yuchen, N. Prashant, Nanotechnology 25, 385202 (2014)

    Article  Google Scholar 

  33. D.S. Ginley, M.L. Knotek, J. Electrochem. Soc. 126, 2163 (1979)

    Article  CAS  Google Scholar 

  34. B.I. Lemon, J.T. Hupp, J. Phys. Chem. 100, 14578 (1996)

    Article  CAS  Google Scholar 

  35. F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, J. Bisquert, J. Phys. Chem. B 107, 758 (2003)

    Article  CAS  Google Scholar 

  36. H. Tokudome, M. Miyauchi, Angew. Chem. Int. Ed. 44, 1974 (2005)

    Article  CAS  Google Scholar 

  37. A. Ghicov, H. Tsuchiya, R. Hahn, J.M. Macak, A.G. Muñoz, P. Schmuki, Electrochem. Commun. 8, 528 (2006)

    Article  CAS  Google Scholar 

  38. A. Ghicov, M. Yamamoto, P. Schmuki, Angew. Chem. Int. Ed. 47, 7934 (2008)

    Article  CAS  Google Scholar 

  39. F. Fabregat-Santiago, E.M. Barea, J. Bisquert, G.K. Mor, K. Shankar, C.A. Grimes, J. Am. Chem. Soc. 130, 11312 (2008)

    Article  CAS  Google Scholar 

  40. B.H. Meekins, P.V. Kamat, ACS Nano 3, 3437 (2009)

    Article  CAS  Google Scholar 

  41. J. Idígoras, T. Berger, J.A. Anta, J. Phys. Chem. C 117, 1561 (2013)

    Article  Google Scholar 

  42. Z. Zhang, M.N. Hedhili, H. Zhu, P. Wang, Phys. Chem. Chem. Phys. 15, 15637 (2013)

    Article  CAS  Google Scholar 

  43. C. Kim, S. Kim, J. Choi, J. Lee, J.S. Kang, Y.-E. Sung, J. Lee, W. Choi, J. Yoon, Electrochim. Acta 141, 113 (2014)

    Article  CAS  Google Scholar 

  44. R. Hahn, F. Schmidt-Stein, J. Salonen, S. Thiemann, Y. Song, J. Kunze, V.-P. Lehto, P. Schmuki, Angew. Chem. Int. Ed. 48, 7236 (2009)

    Article  CAS  Google Scholar 

  45. C. Rüdiger, F. Maglia, S. Leonardi, M. Sachsenhauser, I.D. Sharp, O. Paschos, J. Kunze, Electrochim. Acta 71, 1 (2012)

    Article  Google Scholar 

  46. J. van Drunen, B.K. Pilapil, Y. Makonnen, D. Beauchemin, B.D. Gates, G. Jerkiewicz, ACS Appl. Mater. Interfaces 6, 12046 (2014)

    Article  Google Scholar 

  47. S. Proch, K. Kodama, M. Inaba, K. Oishi, N. Takahashi, Y. Morimoto, Electrocatalysis 7, 249 (2016)

    Article  CAS  Google Scholar 

  48. T.J. Schmidt, H.A. Gasteiger, G.D. Stäb, P.M. Urban, D.M. Kolb, R.J. Behm, J. Electrochem. Soc. 145, 2354 (1998)

    Article  CAS  Google Scholar 

  49. K. Lee, A. Mazare, P. Schmuki, Chem. Rev. 114, 9385 (2014)

    Article  CAS  Google Scholar 

  50. L. Calvillo, D. Fittipaldi, C. Rüdiger, S. Agnoli, M. Favaro, C. Valero-Vidal, C. Di Valentin, A. Vittadini, N. Bozzolo, S. Jacomet, L. Gregoratti, J. Kunze-Liebhäuser, G. Pacchioni, G. Granozzi, J. Phys. Chem. C 118, 22601 (2014)

    Article  CAS  Google Scholar 

  51. L. Calvillo, G. García, A. Paduano, O. Guillen-Villafuerte, C. Valero-Vidal, A. Vittadini, M. Bellini, A. Lavacchi, S. Agnoli, A. Martucci, J. Kunze-Liebhäuser, E. Pastor, G. Granozzi, ACS Appl. Mater. Interfaces 8, 716 (2016)

    Article  CAS  Google Scholar 

  52. J.M. Chappé, A.C. Fernandes, C. Moura, E. Alves, N.P. Barradas, N. Martin, J.P. Espinós, F. Vaz, Surf. Coat. Technol. 206, 2525 (2012)

    Article  Google Scholar 

  53. A.N. Enyashin, A.L. Ivanovskii, Chem. Phys. 362, 58 (2009)

    Article  CAS  Google Scholar 

  54. Y.X. Leng, J.Y. Chen, H. Sun, P. Yang, G.J. Wan, J. Wang, N. Huang, Surf. Coat. Technol. 176, 141 (2004)

    Article  CAS  Google Scholar 

  55. A. Vesel, M. Mozetic, J. Kovac, A. Zalar, Appl. Surf. Sci. 253, 2941 (2006)

    Article  CAS  Google Scholar 

  56. T.L. Barr, S. Seal, J. Vac, Sci. Technol., A 13, 1239 (1995)

    CAS  Google Scholar 

  57. A. Dekanski, J. Stevanović, R. Stevanović, B.Ž. Nikolić, V.M. Jovanović, Carbon 39, 1195 (2001)

    Article  CAS  Google Scholar 

  58. M.C. Nongbe, T. Ekou, L. Ekou, K.B. Yao, E. Le Grognec, F.-X. Felpin, Renew. Energy 106, 135 (2017)

    Article  CAS  Google Scholar 

  59. Z.H. Lu, J.P. McCaffrey, B. Brar, G.D. Wilk, R.M. Wallace, L.C. Feldman, S.P. Tay, Appl. Phys. Lett. 71, 2764 (1997)

    Article  CAS  Google Scholar 

  60. S. Tanuma, C.J. Powell, D.R. Penn, Surf. Interface Anal. 21, 165 (1994)

    Article  CAS  Google Scholar 

  61. H. Ishii, D. Tsunami, T. Suenaga, N. Sato, Y. Kimura, M. Niwano, J of the Surface Sci Soc of Japan 28, 264 (2007)

    Article  CAS  Google Scholar 

  62. S. Miyazaki, T. Maruyama, A. Kohno, M. Hirose, Microelectron. Eng. 48, 63 (1999)

    Article  CAS  Google Scholar 

  63. S. Trasatti, Pure Appl. Chem. 58, 955 (1986)

    CAS  Google Scholar 

  64. F. Cardon, W.P. Gomes, J. Phys. D. Appl. Phys. 11, L63 (1978)

    Article  CAS  Google Scholar 

  65. P. Schmuki, H. Böhni, J.A. Bardwell, J. Electrochem. Soc. 142, 1705 (1995)

    Article  CAS  Google Scholar 

  66. Z. Chen, H. Dinh, E. Miller, Photoelectrochemical Water Splitting—Standards, Experimental Methods, and Protocols, Z. Chen, H. Dinh, E. Miller Springer, New York, 2013, 63

  67. R. Beranek, Adv. Phys. Chem. 2011 (2011)

  68. H.A. Al-Kandari, A.M. Abdullah, A.M. Mohamed, S.A. Al-Kandari, ECS Trans. 61, 13 (2014)

    Article  CAS  Google Scholar 

  69. A.J. Bard, L.R. Faulkner, Electrochemical Methods—Fundamentals and Applications, Second edn. (Wiley, New York, 2001)

    Google Scholar 

  70. X.-Q. Gong, A. Selloni, O. Dulub, P. Jacobson, U. Diebold, J. Am. Chem. Soc. 130, 370 (2008)

    Article  CAS  Google Scholar 

  71. K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M. Markovic, Electrochim. Acta 53, 3181 (2008)

    Article  CAS  Google Scholar 

  72. G.V. Fortunato, F. de Lima, G. Maia, J. Power Sources 302, 247 (2016)

    Article  CAS  Google Scholar 

  73. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Physical Electronics, Inc., 1995

  74. K. Shimazu, K. Uosaki, H. Kita, Y. Nodasaka, J. Electroanal. Chem. Interfacial Electrochem. 256, 481 (1988)

    Article  CAS  Google Scholar 

  75. S. Dong, Q. Qiu, J. Electroanal. Chem. Interfacial Electrochem. 314, 223 (1991)

    Article  CAS  Google Scholar 

  76. J.-H. Ye, P.S. Fedkiw, Electrochim. Acta 41, 221 (1996)

    Article  CAS  Google Scholar 

  77. F. Gloaguen, J.M. Léger, C. Lamy, A. Marmann, U. Stimming, R. Vogel, Electrochim. Acta 44, 1805 (1999)

    Article  CAS  Google Scholar 

  78. W.B. Schneider, U. Benedikt, A.A. Auer, ChemPhysChem 14, 2984 (2013)

    Article  CAS  Google Scholar 

  79. S. Proch, M. Wirth, H.S. White, S.L. Anderson, J. Am. Chem. Soc. 135, 3073 (2013)

    Article  CAS  Google Scholar 

  80. A. von Weber, E.T. Baxter, H.S. White, S.L. Anderson, J. Phys. Chem. C 119, 11160 (2015)

    Article  Google Scholar 

  81. S. Yang, J. Kim, Y.J. Tak, A. Soon, H. Lee, Angew. Chem. Int. Ed. 55, 2058 (2016)

    Article  CAS  Google Scholar 

  82. C. H. Choi, M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H.-T. Kim, K. J. J. Mayrhofer, H. Kim, M. Choi, Nat Commun 7, (2016)

  83. B.E. Hayden, Acc. Chem. Res. 46, 1858 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Proch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Proch, S., Yoshino, S., Gunjishima, I. et al. Acetylene-Treated Titania Nanotube Arrays (TNAs) as Support for Oxygen Reduction Reaction (ORR) Platinum Thin Film Catalysts. Electrocatalysis 8, 351–365 (2017). https://doi.org/10.1007/s12678-017-0377-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0377-7

Keywords

Navigation