Skip to main content
Log in

Catalytic Duality of Platinum Surface Oxides in the Oxygen Reduction and Hydrogen Oxidation Reactions

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

In polymer electrolyte membrane fuel cells (PEMFCs), the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR) take place on the surface of platinum nanoparticles (Pt-NPs) residing on carbon support. Polycrystalline platinum (Pt(poly)) serves as a model polyoriented system due to its randomly oriented grains separated by grain boundaries, and research using Pt(poly) creates important background knowledge that is used to identify and understand electrochemical phenomena occurring in fuel cells. In this study, we report new results on the electrochemical behavior of Pt(poly) in 0.50 M H2SO4 aqueous solution saturated with reactive gases, namely O2(g) and H2(g). We analyze the influence of the potential scan rate over a broad range of values (1.00–50.0 mV s−1) on the cyclic voltammetry (CV) behavior of Pt(poly). A comparative analysis of the impact of dissolved O2 and H2 on the electrochemical behavior of Pt(poly) is performed using CV profiles and capacitance transients. Their analysis reveals the existence of new features that are observed in the potential range corresponding to the Pt surface oxide formation and reduction. The results indicate that the Pt surface oxide reveals catalytic duality because it acts both as an inhibitor and a catalyst in both the ORR and HOR. In the case of the ORR, the anodic-going transients reveal that the process becomes inhibited as the Pt surface oxide develops, while in the cathodic-going transients, the reduction of Pt surface oxide significantly (ca. 65%) increases the reaction rate. In the case of the HOR, the anodic-going transients also reveal that the process becomes inhibited as the Pt surface oxide develops, while in the cathodic-going transients, the reduction of Pt surface oxide increases (ca. 15%) the reaction rate. The catalytic effect can be attributed either to changes in the surface electronic structure that accompanies the surface oxide reduction or to short-lived increase in the electrochemically active surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Papageorgopoulos, D. Fuel cells overview. (Presented at the U.S. Department of Energy (DOE) 2014 Fuel Cells Annual Merit Review, Washington DC, 2014). http://www.hydrogen.energy.gov/pdfs/review14/fc000_papageorgopoulos_2014_o.pdf (accessed August 1, 2014).

  2. X.-Z. Yuan, X.-Z.H. Wang, in PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications, ed. by J. Zhang. (Springer, Vancouver, B.C. 2008), pp. 4–34

  3. F. Barbir, PEM fuel cells: theory and practice, 2nd edn. (Academic Press, Cambridge, 2013), pp. 2–16

    Google Scholar 

  4. S. Gottesfeld, T. Zawodzinski, Adv. Electrochem. Sci. Eng. 5, 195 (1997)

    Article  CAS  Google Scholar 

  5. Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, Appl. Energy 88, 981 (2011a)

    Article  CAS  Google Scholar 

  6. J.H. Wee, Renew. Sustainable Energy Rev. 11, 1720 (2007)

    Article  CAS  Google Scholar 

  7. F. Barbir, T. Gómez, Int. J. Hydrog. Energy 21, 891 (1996)

    Article  CAS  Google Scholar 

  8. V. Mehta, J.S. Cooper, J. Power Sources 114, 32 (2003)

    Article  CAS  Google Scholar 

  9. C. Wang, M. Chi, D. Li, D.V.D. Vilet, G. Wang, Q. Lin, J.F. Mitchell, K.L. More, M.M. Markovic, V.R. Stamenkovic, ACS Catal. 1, 1355 (2011b)

    Article  CAS  Google Scholar 

  10. B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001)

    Article  CAS  Google Scholar 

  11. S. Lankiang, M. Chiwata, S. Baranton, H. Uchida, C. Coutanceau, Electrochim. Acta 182, 131 (2015)

    Article  CAS  Google Scholar 

  12. J. Tollefson, Nature 464, 1262 (2010)

    Article  CAS  Google Scholar 

  13. C. Coutanceau, S. Baranton, T.W. Napporn, in The delivery of nanoparticles, ed. by A. A. Hashim. Platinum fuel cell nanoparticle syntheses: effect on morphology, structure and electrocatalytic behavior (InTech Publisher, Rijeka, 2011) Ch. 19, p. 403

    Google Scholar 

  14. P. Urchaga, M. Weissmann, S. Baranton, T. Girardeau, C. Coutanceau, Langmuir 25, 6543 (2009)

    Article  CAS  Google Scholar 

  15. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Marković, Nat. Mater. 6, 241 (2007a)

    Article  CAS  Google Scholar 

  16. V. Stamenković, T.J. Schmidt, P.N. Ross, N.M. Marković, J. Phys. Chem. B 106, 11970 (2002)

    Article  Google Scholar 

  17. U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenković, V. Radmilovic, N.M. Marković, P.N. Ross, J. Phys. Chem. B 106, 4181 (2002)

    Article  CAS  Google Scholar 

  18. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Science 315, 493 (2007b)

    Article  CAS  Google Scholar 

  19. A. Lasia, in Handbook of fuel cells, ed. by W. Vielstich, A. Lamm, H. A. Gasteiger, vol 2 (Wiley, West Essex, 2003), pp. 416–421

    Google Scholar 

  20. W. Vielstich, in Handbook of fuel cells, ed. by W. Vielstich, A. Lamm, H. A. Gasteiger, vol 2 (Wiley, West Essex, 2003), pp. 151–162

    Google Scholar 

  21. L. Xing, M.A. Hossain, M. Tian, D. Beauchemin, K.T. Adjemian, G. Jerkiewicz, Electrocatalysis 5, 96 (2014)

    Article  CAS  Google Scholar 

  22. Y. Sugawara, T. Okayasu, A.P. Yadav, A. Nishikata, T. Tsuru, J. Electrochem. Soc. 159(11), F779 (2012)

    Article  CAS  Google Scholar 

  23. S. Mitsushima, Y. Koizumi, S. Uzuka, K.-I. Ota, Electrochim. Acta 54, 455 (2008)

    Article  CAS  Google Scholar 

  24. G. Benke, W. Gnot, Hydrometallurgy 64, 205 (2002)

    Article  CAS  Google Scholar 

  25. K.J.J. Mayrhofer, J.C. Meier, S.J. Ashton, G.K.H. Wiberg, F. Kraus, M. Hanzlik, M. Arenz, Electrochem. Commun. 10, 1144 (2008)

    Article  CAS  Google Scholar 

  26. K.J.J. Mayrhofer, K. Hartl, V. Juhart, M. Arenz, J. Am. Chem. Soc. 131, 16348 (2009)

    Article  CAS  Google Scholar 

  27. S. Mitsushima, S. Kawahara, K.-I. Ota, N. Kamiya, J. Electrochem. Soc. 154, B153 (2007)

    Article  CAS  Google Scholar 

  28. Z. Wang, E. Tada, A. Nishikata, J. Electrochem. Soc. 163, F421 (2016)

    Article  CAS  Google Scholar 

  29. N. Hoshi, M. Nakamura, C. Yoshida, Y. Yamada, M. Kameyama, Y. Mizumoto, Electrochem. Commun. 72, 5 (2016)

    Article  CAS  Google Scholar 

  30. O.T. Holton, J.W. Stevenson, Platinum Metals Rev. 57, 259 (2013)

    Article  Google Scholar 

  31. W. Sheng, H.A. Gasteiger, Y. Shao-Horn, J. Electrochem. Soc. 157, B1529 (2010)

    Article  CAS  Google Scholar 

  32. J. Greeley, I.E.L. Stephens, A.S. Bondarenko, T.P. Johansson, H.A. Hansen, T.F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J.K. Nørskov, Nat. Chem. 1, 552 (2009)

    Article  CAS  Google Scholar 

  33. D. Pletcher, S. Sotiropoulos, J. Chem. Soc. Faraday Trans. 90, 3663 (1994)

    Article  CAS  Google Scholar 

  34. B.E. Conway, Prog. Surf. Sci. 49, 331 (1995)

    Article  CAS  Google Scholar 

  35. F. Marken, A. Neudeck, A.M. Bond, in Electroanalytical methods, ed. by F. Scholz. (Springer, Verlag Berlin Heidelberg, 2010), pp. 57–63

  36. J. Wang, Analytical electrochemistry (Wiley, New York, 2006), pp. 29–36

  37. T. Biegler, D. Rand, R. Woods, J. Electroanal. Chem. Interfacial Electrochem. 29, 269 (1971)

    Article  CAS  Google Scholar 

  38. E. Gileadi, Physical electrochemistry: fundamentals, techniques and applications, (Eds.: Wiley-VCH: Wiley-VCH Verlag GmbH & Co. KGaA, 2011) pp. 221–223.

  39. R. Subbaraman, D. Strmcnik, A.P. Paulikas, V.R. Stamenkovic, N.M. Markovic, ChemPhysChem 11, 2825 (2010)

    Article  CAS  Google Scholar 

  40. N.M. Markovic, P.N. Ross, Surf. Sci. Rep. 45, 121 (2002)

    Article  Google Scholar 

  41. H. Angerstein-Kozlowska, in Comprehensive treatise of electrochemistry, ed. by E. Yeager, J. O.’. M. Bockris, B. E. Conway, vol 9 ch. 1 (Eds.: Plenum Press, New York, 1984)

    Google Scholar 

  42. Y. Furuya, T. Mashio, A. Ohma, N. Dale, K. Oshihara, G. Jerkiewicz, J. Chem. Phys. 141, 164705 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

A grateful acknowledgement is made to the Catalysis Research for Polymer Electrolyte Fuel Cells (CaRPE-FC) Network, the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, and Queen’s University for their financial support. S.T. acknowledges constructive discussions with Dr. S. Baranton and Mr. D. Esau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory Jerkiewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahmasebi, S., McMath, A.A., van Drunen, J. et al. Catalytic Duality of Platinum Surface Oxides in the Oxygen Reduction and Hydrogen Oxidation Reactions. Electrocatalysis 8, 301–310 (2017). https://doi.org/10.1007/s12678-017-0372-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0372-z

Keywords

Navigation