Skip to main content
Log in

Methanol Oxidation on Pt(111) from First-Principles in Heterogeneous and Electrocatalysis

  • Original Article
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The catalytic oxidation of methanol on Pt(111) has been addressed based on first-principles electronic structure calculations. The chemical environment corresponding to the conditions in heterogeneous and electro-catalysis has been taken into account in a grand-canonical approach. Furthermore, the aqueous electrolyte in electrocatalysis has been described in an implicit solvent model. Thus, we find characteristic differences between the methanol oxidation paths in heterogeneous and electro-catalysis. The presence of the aqueous electrolyte stabilizes reaction intermediates containing hydrophilic groups thus also influencing the selectivity in the methanol oxidation. In addition, adsorbed hydrogen on Pt(111) is shown to render the electro-oxidation of methanol less efficient.

The difference between methanol oxidation in heterogeneous and electro-catalysis has been studied theoretically from first principles employing a grand-canonical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Schlögl, The role of chemistry in the energy challenge. ChemSusChem. 3, 209 (2010)

    Article  Google Scholar 

  2. C. Hartnig, P. Vassilev, M.T.M. Koper, Ab initio classical molecular dynamics studies of electrode reactions. Electrochim. Acta. 48, 3751 (2003)

    Article  CAS  Google Scholar 

  3. C. Hartnig, E. Spohr, The role of water in the initial steps of methanol oxidation on Pt(111). Chem. Phys. 319, 185 (2005)

    Article  CAS  Google Scholar 

  4. M.J. Janik, C.D. Taylor, M. Neurock, First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide. Top. Catal. 46, 306 (2007). doi:10.1007/s11244-007-9004-9

    Article  CAS  Google Scholar 

  5. J.A. Keith, T. Jacob, Theoretical studies of potential-dependent and competing mechanisms of the electrocatalytic oxygen reduction reaction on Pt(111). Angew. Chem. Int. Ed. 49, 9521 (2010). doi:10.1002/anie.201004794

    Article  CAS  Google Scholar 

  6. F. Calle-Vallejo, M.T. Koper, First-principles computational electrochemistry: achievements and challenges. Electrochim. Acta. 84(0), 3 (2012). doi:10.1016/j.electacta.2012.04.062

    Article  CAS  Google Scholar 

  7. P. Quaino, E. Santos, H. Wolfschmidt, M. Montero, U. Stimming, Theory meets experiment: electrocatalysis of hydrogen oxidation/evolution at Pd-Au nanostructures. Catal. Today. 177, 55 (2011). doi:10.1016/j.cattod.2011.05.004

    Article  CAS  Google Scholar 

  8. P. Quaino, N. Luque, G. Soldano, R. Nazmutdinov, E. Santos, T. Roman, A. Lundin, A. Groß, W. Schmickler, Solvated protons in density functional theory—few examples. Electrochim. Acta. 105, 248 (2013)

    Article  CAS  Google Scholar 

  9. K. Chan, J.K. Nørskov, Electrochemical barriers made simple. J. Phys. Chem. Lett. 6(14), 2663 (2015). doi:10.1021/acs.jpclett.5b01043

    Article  CAS  Google Scholar 

  10. A. Groß, F. Gossenberger, X. Lin, M. Naderian, S. Sakong, T. Roman, Water structures at metal electrodes studied by ab initio molecular dynamics simulations. J. Electrochem. Soc. 161(8), E3015 (2014). doi:10.1149/2.003408jes

    Article  Google Scholar 

  11. T. Roman, F. Gossenberger, K. Forster-Tonigold, A. Groß, Halide adsorption on close-packed metal electrodes. Phys. Chem. Chem. Phys. 16, 13630 (2014). doi:10.1039/C4CP00237G

    Article  CAS  Google Scholar 

  12. F. Gossenberger, T. Roman, K. Forster-Tonigold, A. Groß, Change of the work function of platinum electrodes induced by halide adsorption. Beilstein J. Nanotechnol. 5, 152 (2014). doi:10.3762/bjnano.5.15

    Article  Google Scholar 

  13. N. G. Hörmann, M. Jäckle, F. Gossenberger, T. Roman, K. Forster-Tonigold, M. Naderian, S. Sakong, A. Groß, Some challenges in the first-principles modeling of structures and processes in electrochemical energy storage and transfer. J. Power Sources. 275, 531 (2015). doi:10.1016/j.jpowsour.2014.10.198

    Article  Google Scholar 

  14. S. Sakong, M. Naderian, K. Mathew, R.G. Hennig, A. Groß, Density functional theory study of the electrochemical interface between a Pt electrode and an aqueous electrolyte using an implicit solvent method. J. Chem. Phys. 142(23), 234107 (2015). doi:10.1063/1.4922615

    Article  Google Scholar 

  15. F. Gossenberger, T. Roman, A. Groß, Equilibrium coverage of halides on metal electrodes. Surf. Sci. 631, 17 (2015). doi:10.1016/j.susc.2014.01.021

    Article  CAS  Google Scholar 

  16. S. Sakong, A. Groß, The importance of the electrochemical environment in the electro-oxidation of methanol on Pt(111). ACS Catal. 6, 5575 (2016). doi:10.1021/acscatal.6b00931

    Article  CAS  Google Scholar 

  17. S. Sakong, K. Forster-Tonigold, A. Groß, The structure of water at a Pt(111) electrode and the potential of zero charge studied from first principles. J. Chem. Phys. 144(19), 194701 (2016). doi:10.1063/1.4948638

    Article  Google Scholar 

  18. X. Lin, F. Evers, A. Groß, First-principles study of the structure of water layers on flat and stepped Pb electrodes. Beilstein J. Nanotechnol. 7, 533 (2016). doi:10.3762/bjnano.7.47

    Article  CAS  Google Scholar 

  19. F. Gossenberger, T. Roman, A. Groß, Hydrogen and halide co-adsorption on Pt(111) in an electrochemical environment: A computational perspective. Electrochim. Acta. 216, 152 (2016). doi:10.1016/j.electacta.2016.08.117

    Article  CAS  Google Scholar 

  20. M. Mehlhorn, S. Schnur, A. Groß, K. Morgenstern, Molecular-scale imaging of water near charged surfaces. ChemElectroChem. 1(2), 431 (2014). doi:10.1002/celc.201300063

    Article  Google Scholar 

  21. S. Schnur, A. Groß, Properties of metal–water interfaces studied from first principles. J. Phys. 11(12), 125003 (2009). doi:10.1088/1367-2630/11/12/125003

    Google Scholar 

  22. S. Schnur, A. Groß, Challenges in the first-principles description of reactions in electrocatalysis. Catal. Today. 165(1), 129 (2011). doi:10.1016/j.cattod.2010.11.071

    Article  CAS  Google Scholar 

  23. A. Ignaczak, R. Nazmutdinov, A. Goduljan, L.M. De Campos Pinto, F. Juarez, P. Quaino, E. Santos, W. Schmickler, A scenario for oxygen reduction in alkaline media. Nano Energy. 26, 558 (2016). doi:10.1016/j.nanoen.2016.06.001

    Article  CAS  Google Scholar 

  24. C. Hartnig, M.T.M. Koper, Solvent reorganization in electron and ion transfer reactions near a smooth electrified surface: a molecular dynamics study. J. Am. Chem. Soc. 125, 9840 (2003)

    Article  CAS  Google Scholar 

  25. K. Reuter, D. Frenkel, M. Scheffler, The steady state of heterogeneous catalysis, studied by first-principles statistical mechanics. Phys. Rev. Lett. 93, 116105 (2004)

    Article  Google Scholar 

  26. K. Reuter, M. Scheffler, First-principles kinetic monte carlo simulations for heterogeneous catalysis: Application to the CO oxidation at RuO 2(110). Phys. Rev. B. 73, 045433 (2006)

    Article  Google Scholar 

  27. J. Rogal, K. Reuter, M. Scheffler, CO oxidation at Pd(100): a first-principles constrained thermodynamics study. Phys. Rev. B. 75, 205433 (2007). doi:10.1103/PhysRevB.75.205433

    Article  Google Scholar 

  28. C. Shi, H.A. Hansen, A.C. Lausche, J.K. Norskov, Trends in electrochemical co2 reduction activity for open and close-packed metal surfaces. Phys. Chem. Chem. Phys. 16, 4720 (2014). doi:10.1039/C3CP54822H

    Article  CAS  Google Scholar 

  29. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jónsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B. 108(46), 17886 (2004). doi:10.1021/jp047349j

    Article  Google Scholar 

  30. E. Skulason, G.S. Karlberg, J. Rossmeisl, T. Bligaard, J. Greeley, H. Jonsson, J.K. Norskov, Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys. 9, 3241 (2007). doi:10.1039/B700099E

    Article  CAS  Google Scholar 

  31. J.K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, Density functional theory in surface chemistry and catalysis. Proc. Natl. Acad. Sci. 108(3), 937 (2011). doi:10.1073/pnas.1006652108

    Article  Google Scholar 

  32. A.R. Leach. Molecular modelling: Principles and applications, 2nd edn. (Pearson, Harlow, 2001)

    Google Scholar 

  33. A. Roudgar, A. Groß, Water bilayer on the Pd/Au(111) overlayer system: coadsorption and electric field effects. Chem. Phys. Lett. 409, 157 (2005)

    Article  CAS  Google Scholar 

  34. A. Michaelides, Density functional theory simulations of water-metal interfaces: Waltzing waters, a novel 2D ice phase, and more. Appl. Phys. A. 85, 415 (2006)

    Article  CAS  Google Scholar 

  35. D. Gunceler, K. Letchworth-Weaver, R. Sundararaman, K.A. Schwarz, T.A. Arias, The importance of nonlinear fluid response in joint density-functional theory studies of battery systems. Model. Simul. Mater. Sc. 21 (7), 074005 (2013). doi:10.1088/0965-0393/21/7/074005

    Article  Google Scholar 

  36. K. Letchworth-Weaver, T.A. Arias, Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys. Rev. B. 86, 075140 (2012). doi:10.1103/PhysRevB.86.075140

    Article  Google Scholar 

  37. S.A. Petrosyan, A.A. Rigos, T.A. Arias, Joint density-functional theory: ab initio study of cr2o3 surface chemistry in solution. J. Phys. Chem. B. 109(32), 15436 (2005). doi:10.1021/jp044822k

    Article  CAS  Google Scholar 

  38. S.A. Petrosyan, J.F. Briere, D. Roundy, T.A. Arias, Joint density-functional theory for electronic structure of solvated systems. Phys. Rev. B. 75, 205105 (2007). doi:10.1103/PhysRevB.75.205105

    Article  Google Scholar 

  39. A. Arico, V. Baglio, A.D. Blasi, E. Modica, P. Antonucci, V. Antonucci, Analysis of the high-temperature methanol oxidation behaviour at carbon-supported pt–ru catalysts. J. Electroanal. Chem. 557, 167 (2003). doi:10.1016/S0022-0728(03)00369-3

    Article  CAS  Google Scholar 

  40. R. Reichert, J. Schnaidt, Z. Jusys, R.J. Behm, The influence of reactive side products on the electrooxidation of methanol - a combined in situ infrared spectroscopy and online mass spectrometry study. Phys. Chem. Chem. Phys. 16, 13780 (2014). doi:10.1039/C4CP01229A

    Article  CAS  Google Scholar 

  41. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169 (1996). doi:10.1103/PhysRevB.54.11169

    Article  CAS  Google Scholar 

  42. B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B. 59, 7413 (1999)

    Article  Google Scholar 

  43. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements h-pu. J. Chem. Phys. 132(15), 154104 (2010). doi:10.1063/1.3382344

    Article  Google Scholar 

  44. S. Grimme, Density functional theory with london dispersion corrections. Wiley Interdiscip. Rev. Comput. Mol. Sci. 1(2), 211 (2011). doi:10.1002/wcms.30

    Article  CAS  Google Scholar 

  45. S. Grimme, A. Hansen, J.G. Brandenburg, C. Bannwarth, Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116(9), 5105 (2016). doi:10.1021/acs.chemrev.5b00533

    Article  CAS  Google Scholar 

  46. K. Tonigold, A. Groß, Dispersive interactions in water bilayers at metallic surfaces: A comparison of the pbe and rpbe functional including semiempirical dispersion corrections. J. Comput. Chem. 33(6), 695 (2012). doi:10.1002/jcc.22900

    Article  CAS  Google Scholar 

  47. K. Forster-Tonigold, A. Groß, Dispersion corrected rpbe studies of liquid water. J. Chem. Phys. 141, 064501 (2014). doi:10.1063/1.4892400

    Article  Google Scholar 

  48. B. Koslowski, A. Tschetschetkin, N. Maurer, P. Ziemann, J. Kuc̆era, A. Groß, 4,4’-dithiodipyridine on Au(111): a combined STM, STS, and DFT study. J. Phys. Chem. C. 117, 20060 (2013)

    Article  CAS  Google Scholar 

  49. K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, R.G. Hennig, Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. J. Chem. Phys. 140, 084106 (2014). doi:10.1063/1.4865107

    Article  Google Scholar 

  50. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B. 50, 17953 (1994). doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  51. G. Mercurio, E.R. McNellis, I. Martin, S. Hagen, F. Leyssner, S. Soubatch, J. Meyer, M. Wolf, P. Tegeder, F.S. Tautz, K. Reuter, Structure and energetics of azobenzene on ag(111): Benchmarking semiempirical dispersion correction approaches. Phys. Rev. Lett. 104, 036102 (2010). doi:10.1103/PhysRevLett.104.036102

    Article  CAS  Google Scholar 

  52. M. Fishman, H.L. Zhuang, K. Mathew, W. Dirschka, R.G. Hennig, Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper. Phys. Rev. B. 87, 245402 (2013). doi:10.1103/PhysRevB.87.245402

    Article  Google Scholar 

  53. O. Andreussi, I. Dabo, N. Marzari, Revised self-consistent continuum solvation in electronic-structure calculations. J. Chem. Phys. 136(6), 064102 (2012). doi:10.1063/1.3676407

    Article  Google Scholar 

  54. O. Andreussi, N. Marzari, Electrostatics of solvated systems in periodic boundary conditions. Phys. Rev. B. 90, 245101 (2014). doi:10.1103/PhysRevB.90.245101

    Article  CAS  Google Scholar 

  55. S. Günther, L. Zhou, M. Hävecker, A. Knop-Gericke, E. Kleimenov, R. Schlögl, R. Imbihl, Adsorbate coverages, surface reactivity in methanol oxidation over Cu(110) A in situ photoelectron spectroscopy study. J. Chem. Phys. 125, 114709 (2006)

    Article  Google Scholar 

  56. S. Sakong, A. Groß, Density functional theory study of the partial oxidation of methanol on copper surfaces. J. Catal. 231, 420 (2005). doi:10.1016/j.jcat.2005.02.009

    Article  CAS  Google Scholar 

  57. S. Sakong, A. Groß, Total oxidation of methanol on Cu(110): a density functional theory study. J. Phys. Chem. A. 111, 8814 (2007). doi:10.1021/jp072773g

    Article  CAS  Google Scholar 

  58. W. Greiner, L. Neise, H. Stöcker. Thermodynamik und Statistische Mechanik (Harri Deutsch, Frankfurt am Main, 1987)

  59. S. Sakong, Y.A. Du, P. Kratzer, Interface defects and impurities at the growth zone of Au-catalyzed GaAs nanowire from first principles. Phys. Status Solidi Rapid Res. Lett. 7(10), 882 (2013). doi:10.1002/pssr.201307210

    Article  CAS  Google Scholar 

  60. K. Reuter, M. Scheffler, Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B. 65, 035406 (2001). doi:10.1103/PhysRevB.65.035406

    Article  Google Scholar 

  61. T. Iwasita, Electrocatalysis of methanol oxidation. Electrochim. Acta. 47(22–23), 3663 (2002). doi:10.1016/S0013-4686(02)00336-5

    Article  CAS  Google Scholar 

  62. A.B. Anderson, H.A. Asiri, Reversible potentials for steps in methanol and formic acid oxidation to CO 2; adsorption energies of intermediates on the ideal electrocatalyst for methanol oxidation and CO 2 reduction. Phys. Chem. Chem. Phys. 16, 10587 (2014). doi:10.1039/C3CP54837F

    Article  CAS  Google Scholar 

  63. F. Calle-Vallejo, J. Tymoczko, V. Colic, Q.H. Vu, M.D. Pohl, K. Morgenstern, D. Loffreda, P. Sautet, W. Schuhmann, A.S. Bandarenka, Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science. 350(6257), 185 (2015). doi:10.1126/science.aab3501

    Article  CAS  Google Scholar 

  64. J. Greeley, M. Mavrikakis, A first-principles study of methanol decomposition on Pt(111). J. Am. Chem. Soc. 124, 7193 (2002)

    Article  CAS  Google Scholar 

  65. J. Greeley, M. Mavrikakis, Competitive paths for methanol decomposition on Pt(111). J. Am. Chem. Soc. 126, 3910 (2004). doi:10.1021/ja037700z

    Article  CAS  Google Scholar 

  66. S.K. Desai, M. Neurock, K. Kourtakis, A periodic density functional theory study of the dehydrogenation of methanol over Pt(111). J. Phys. Chem. B. 106(10), 2559 (2002). doi:10.1021/jp0132984

    Article  CAS  Google Scholar 

  67. D. Cao, G.Q. Lu, A. Wieckowski, S.A. Wasileski, M. Neurock, Mechanisms of methanol decomposition on platinum: a combined experimental and ab initio approach. J. Phys. Chem. B. 109(23), 11622 (2005). doi:10.1021/jp0501188

    Article  CAS  Google Scholar 

  68. C.D. Taylor, S.A. Wasileski, J.S. Filhol, M. Neurock, First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys. Rev. B. 73, 165402 (2006). doi:10.1103/PhysRevB.73.165402

    Article  Google Scholar 

  69. H.F. Wang, Z.P. Liu, Formic acid oxidation at Pt/H 2O interface from periodic DFT calculations integrated with a continuum solvation model. J. Phys. Chem. C. 113(40), 17502 (2009). doi:10.1021/jp9059888

    Article  CAS  Google Scholar 

  70. Y.H. Fang, Z.P. Liu, Tafel kinetics of electrocatalytic reactions: From experiment to first-principles. ACS Catal. 4(12), 4364 (2014). doi:10.1021/cs501312v

    Article  CAS  Google Scholar 

  71. Y.H. Fang, Z.P. Liu, First principles tafel kinetics of methanol oxidation on Pt(111). Surf. Sci. 631, 42 (2015). doi:10.1016/j.susc.2014.05.014

    Article  CAS  Google Scholar 

  72. R. Reichert, J. Schnaidt, Z. Jusys, R.J. Behm, The influence of reactive side products in electrocatalytic reactions: Methanol oxidation as case study. ChemPhysChem. 14(16), 3678 (2013). doi:10.1002/cphc.201300726

    Article  CAS  Google Scholar 

  73. K. Franaszczuk, E. Herrero, P. Zelenay, A. Wieckowski, J. Wang, R.I. Masel, A comparison of electrochemical and gas-phase decomposition of methanol on platinum surfaces. J. Phys. Chem. 96(21), 8509 (1992). doi:10.1021/j100200a056

    Article  CAS  Google Scholar 

  74. J. Wintterlin, R. Schuster, G. Ertl, Existence of a ”hot” atom mechanism for the dissociation of O 2 on Pt(111). Phys. Rev. Lett. 77, 123 (1996)

    Article  CAS  Google Scholar 

  75. A. Eichler, J. Hafner, Molecular precursors in the dissociative adsorption of O 2 on Pt(111). Phys. Rev. Lett. 79, 4481 (1997). doi:10.1103/PhysRevLett.79.4481

    Article  CAS  Google Scholar 

  76. A. Groß, A. Eichler, J. Hafner, M.J. Mehl, D.A. Papaconstantopoulos, Ab initio based tight-binding molecular dynamics simulation of the sticking and scattering of O 2/Pt(111). J. Chem. Phys. 174713, 124 (2006)

    Google Scholar 

  77. L.C. Grabow, A.A. Gokhale, S.T. Evans, J.A. Dumesic, M. Mavrikakis, Mechanism of the water gas shift reaction on Pt: First principles, experiments, and microkinetic modeling. J. Phys. Chem. C. 112(12), 4608 (2008). doi:10.1021/jp7099702

    Article  CAS  Google Scholar 

  78. E.M. Karp, C.T. Campbell, F. Studt, F. Abild-Pedersen, J.K. Nørskov, Energetics of oxygen adatoms, hydroxyl species and water dissociation on Pt(111). J. Phys. Chem. C. 116(49), 25772 (2012). doi:10.1021/jp3066794

    Article  CAS  Google Scholar 

  79. J.C. Fajín, M.N.D.S. Cordeiro, J.B. Gomes, Density functional theory study of the water dissociation on platinum surfaces: General trends. J. Phys. Chem. A. 118(31), 5832 (2014). doi:10.1021/jp411500j

    Article  Google Scholar 

  80. A. Groß, Dynamical quantum processes of molecular beams at surfaces: dissociative adsorption of hydrogen on metal surfaces. Surf. Sci. 363, 1 (1996)

    Article  Google Scholar 

  81. X. Lin, F. Gossenberger, A. Groß, Ionic adsorbate structures on metal electrodes calculated from first-principles. Ind. Eng. Chem. Res. 55(42), 11107 (2016). doi:10.1021/acs.iecr.6b03087

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the German Research Foundation (DFG) through contract GR 1503/21-2. The authors acknowledge the computer time supported by the state of Baden-Württemberg through the bwHPC project and the Germany Research Foundation (DFG) through grant number INST 40/467-1 FUGG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Groß.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakong, S., Groß, A. Methanol Oxidation on Pt(111) from First-Principles in Heterogeneous and Electrocatalysis. Electrocatalysis 8, 577–586 (2017). https://doi.org/10.1007/s12678-017-0370-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0370-1

Keywords

Navigation