Skip to main content
Log in

Conducting Polymer-Layered Carbon Nanotube as Sensor Interface for Electrochemical Detection of Dacarbazine In-Vitro

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

A reusable electrochemical sensor ensembling carbon nanotubes and a conducting polymer together is fabricated for the detection of an important anti-cancer drug, dacarbazine (DTIC). A thin film of a conducting polymer, poly(2-amino-1,3,4-thiadiazole) (poly-ATD), is formed on the carbon nanotube paste electrode (CNPE) by employing a potentiodynamic polymerization technique. The fabricated sensor surface has been characterized by FTIR spectroscopy and scanning electron microscopy (SEM) for the structural and chemical properties of the electrode system. The electrochemical capability of the fabricated poly-ATD/CNPE composite electrode for the detection of DTIC is examined by cyclic voltammetry (CV) and electrochemical impedance spectroscopic analysis (EIS), and the poly-ATD/CNPE electrode is found to be efficient for electrocatalytic oxidation of DTIC. Optimization and evaluation of the sensor system are examined by differential pulse voltammetry (DPV). A linear relationship of DTIC concentration over the peak current of DPVs is exhibited over a wide concentration range of 0.05–24.0 μM with a low detection limit (3σ/b) of 35 nM. Steady state current–time analysis experiments under hydrodynamic conditions exhibited a low detection limit of 20 nM, and the analysis time is as low as 10 s. Practical utility of the fabricated poly-ATD/CNPE biosensor for the detection of DTIC directly from artificial urine and pharmaceutical formulations has been demonstrated with very good recovery limits.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References:

  1. A. Radi, A. Eissa, H.M. Nassef, J. Electroanal. Chem. 717–718, 24 (2014)

    Article  Google Scholar 

  2. M. Song, R. Zhang, X. Wang, Mater. Lett. 60, 2143 (2006)

    Article  CAS  Google Scholar 

  3. Q. Shen, X. Wang, D. Fu, Appl. Surf. Sci. 255, 577 (2008)

    Article  CAS  Google Scholar 

  4. A.J.M. Ordieres, A.C. Garcia, P.T. Blanco, W.F. Smyth, Anal. Chim. Acta 202, 141 (1987)

    Article  CAS  Google Scholar 

  5. Y.M. Temerk, M.M. Kamal, M.S. Ibrahim, H.S.M. Ibrahim, W. Schuhmann, Electroanalysis 23, 1638 (2011)

    Article  CAS  Google Scholar 

  6. M. Zhou, J. Guo, L. Guo, J. Bai, Anal. Chem. 80, 4642 (2008)

    Article  CAS  Google Scholar 

  7. X. Bo, J.C. Ndamanisha, J. Bai, L. Guo, Talanta 82, 85 (2010)

    Article  CAS  Google Scholar 

  8. B.J. Sanghavi, G. Hirsch, S.P. Karna, A.K. Srivastava, Anal. Chim. Acta 735, 37 (2012)

    Article  CAS  Google Scholar 

  9. Y. Liu, H. Teng, H. Hou, T. You, Biosens. Bioelectron. 24, 3329 (2009)

    Article  CAS  Google Scholar 

  10. Y. Wu, X. Mao, X. Cui, L. Zhu, Sensors Actuators B Chem. 145, 749 (2010)

    Article  CAS  Google Scholar 

  11. M. Chicharro, A. Sánchez, E. Bermejo, A. Zapardiel, M.D. Rubianes, G.A. Rivas, Anal. Chim. Acta 543, 84 (2005)

    Article  CAS  Google Scholar 

  12. A. Curulli, C. Bianchini, D. Zane, Electrocatalysis 3, 30 (2012)

    Article  CAS  Google Scholar 

  13. A. Gasnier, M. Laura Pedano, M.D. Rubianes, G.A. Rivas, Sensors Actuators B Chem. 176, 921 (2013)

    Article  CAS  Google Scholar 

  14. N.Y. Sreedhar, M. Sunil Kumar, K. Krishnaveni, Sensors Actuators B Chem. 210, 475 (2015)

    Article  CAS  Google Scholar 

  15. S. Tajik, M.A. Taher, H. Beitollahi, Sensors Actuators B Chem. 197, 228 (2014)

    Article  CAS  Google Scholar 

  16. M. Satyanarayana, K.K. Reddy, K.V. Gobi, Anal. Methods 6, 3772 (2014)

    Article  CAS  Google Scholar 

  17. M. Satyanarayana, K. Koteshwara Reddy, K. Vengatajalabathy Gobi, Electroanalysis 26, 2365 (2014)

    Article  CAS  Google Scholar 

  18. M. Satyanarayana, K.Y. Goud, K.K. Reddy, K.V. Gobi, Electrochim. Acta 178, 608 (2015)

    Article  CAS  Google Scholar 

  19. L. Zhang, L. Wang, J. Solid State Electrochem. 17, 691 (2013)

    Article  CAS  Google Scholar 

  20. P. Kalimuthu, S.A. John, Talanta 80, 1686 (2010)

    Article  CAS  Google Scholar 

  21. A. Yassin, R. Mallet, P. Leriche, J. Roncali, ChemElectroChem 1, 1219 (2014)

    Article  CAS  Google Scholar 

  22. Y. Yang, Y. Yan, X. Chen, W. Zhai, Y. Xu, Y. Liu, Electrocatalysis 5, 344 (2014)

    Article  CAS  Google Scholar 

  23. S.B. Revin, S.A. John, Electrochim. Acta 56, 8934 (2011)

    Article  CAS  Google Scholar 

  24. T. Brooks, C.W. Keevil, Lett. Appl. Microbiol. 24, 203 (1997)

    Article  CAS  Google Scholar 

  25. C. Gouveia-Caridade, R. Pauliukaite, C.M.A. Brett, Electrochim. Acta 53, 6732 (2008)

    Article  CAS  Google Scholar 

  26. E. Laviron, J. Electroanal. Chem. 101, 19 (1979)

    Article  CAS  Google Scholar 

  27. A.J. Bard, L.R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  28. Y. Feng, T. Yang, W. Zhang, C. Jiang, K. Jiao, Anal. Chim. Acta 616, 144 (2008)

    Article  CAS  Google Scholar 

  29. R. Pauliukaite, M.E. Ghica, O. Fatibello-Filho, C.M.A. Brett, Electrochim. Acta 55, 6239 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Ministry of Human Resource Development, India, and the National Institute of Technology, Warangal, for Senior Research Fellowship to MS and for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vengatajalabathy Gobi.

Electronic supplementary material

ESM 1

(DOCX 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satyanarayana, M., Yugender Goud, K., Koteshwara Reddy, K. et al. Conducting Polymer-Layered Carbon Nanotube as Sensor Interface for Electrochemical Detection of Dacarbazine In-Vitro. Electrocatalysis 8, 214–223 (2017). https://doi.org/10.1007/s12678-017-0357-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0357-y

Keywords

Navigation