Skip to main content
Log in

Magnetically Induced Electrodeposition of Ni-Mo Alloy for Hydrogen Evolution Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The electrocatalytic activity of Ni-Mo alloy coatings for hydrogen evolution reaction (HER) was tried to increase by inducing the magnetic field (B), perpendicular to the process of deposition. The electrocatalytic activity of Ni-Mo alloys were studied by cyclic voltammetry (CV) and chronopotentiometry (CP) measurements in 1.0 M KOH medium. Ni-Mo alloy coatings developed at c.d. = 1.0 A dm−2 and B = 0.4 T was found to exhibit highest electrocatalytic activity for HER (with highest cathodic peak c.d. of −0.274 A cm−2 and least onset potential of −1.24 V and highest volume of H2 liberated, 14.0 mL), demonstrated by CV and CP experiments. The stability factor of Ni-Mo alloy coatings were evaluated through corrosion study. The experimental results showed that Ni-Mo alloy, electrodeposited in the presence of B, is more corrosion resistant than its conventional alloy, when tested in the same alkaline medium. The increase in the electrocatalytic activity of Ni-Mo alloy coatings, developed under induced B, is attributed to the structural and morphological changes, caused by an increase of Ni content in the alloy, evident from X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.A. Turner, Sustainable hydrogen production. Science 305, 972 (2004)

    Article  CAS  Google Scholar 

  2. J. Tian, Q. Liu, A.M. Asiri, X. Sun, Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 136, 7587 (2014)

    Article  CAS  Google Scholar 

  3. N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729 (2006)

    Article  CAS  Google Scholar 

  4. D. Merki, S. Fierro, H. Vrubel, X. Hu, Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem. Sci. 2, 1262 (2011)

    Article  CAS  Google Scholar 

  5. R. Khotari, D. Buddhi, R.L. Sawhney, Studies on the effect of temperature of the electrolytes on the rate of production of hydrogen. Int. J. Hydrog. Energy 30, 261 (2005)

    Article  Google Scholar 

  6. O. Aaboubi, Hydrogen evolution activity of Ni-Mo coating electrodeposited under magnetic field control. Int. J. Hydrog. Energy 36, 4702 (2011)

    Article  CAS  Google Scholar 

  7. D.E. Hall, Electrodes for alkaline water electrolysis. J. Electrochem. Soc. 128, 740 (1981)

    Article  CAS  Google Scholar 

  8. M.B.I. Janjua, R.L. Le Roy, Electrocatalyst performance in industrial water electrolysers. Int. J. Hydrog. Energy 10, 11 (1985)

    Article  CAS  Google Scholar 

  9. J.M. Jakšić, M.V. Vojnović, N.V. Krstajić, Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodes. Electrochim. Acta 45, 4151 (2000)

    Article  Google Scholar 

  10. L. Birry, A. Lasia, Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes. J. Appl. Electrochem. 34, 735 (2004)

    Article  CAS  Google Scholar 

  11. S. Martinez, M. Metikoš-Huković, L. Valek, Electrocatalytic properties of electrodeposited Ni-15Mo cathodes for the HER in acid solutions: synergistic electronic effect. J. Mol. Catal. A Chem. 245, 121 (2006)

    Article  Google Scholar 

  12. N.V. Krstajić, V.D. Jović, L. Gajić-Krstajić, B.M. Jović, A.L. Antozzi, G.N. Martelli, Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution. Int. J. Hydrog. Energy 33, 3676 (2008)

    Article  Google Scholar 

  13. Q. Han, S. Cui, N. Pu, J. Chen, K. Liu, X. Wei, A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium. Int. J. Hydrog. Energy 27, 5194 (2010)

    Article  Google Scholar 

  14. M.A. Domınguez-Crespo, M. Plata-Torres, A.M. Torres-Huerta, E.M. Arce-Estrada, J.M. Hallen-Lopez, Kinetic study of hydrogen evolution reaction on Ni30 Mo70, Co30Mo70, Co30Ni70 and Co10Ni20Mo70 alloy electrodes. Mat. Charac. 55, 83 (2005)

    Article  Google Scholar 

  15. E. Navarro-Flores, Z. Chong, S. Omanovic, Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in acidic medium. J. Mol. Cata. A Chem. 226, 197 (2005)

    Article  Google Scholar 

  16. R.A. Tacken, L.J. Janssen, Applications of magnetoelectrolysis. J. Appl. Electrochem. 25, 1 (1995)

    Article  CAS  Google Scholar 

  17. R. Aogaki, K. Fueki, T. Mukaibo, Application of magnetohydrodynamic effect to the analysis of electrochemical reactions. 2. Diffusion process in mhd forced flow of electrolyte solution. Denki kagaku 43, 509 (1975)

    CAS  Google Scholar 

  18. O. Wassef, T.Z. Fahidy, Magnetoelectrolysis in the presence of bubble formation at the cathode. Electrochim. Acta 21, 727 (1976)

    Article  CAS  Google Scholar 

  19. K.L. Rabah, J.P. Chopart, H. Schloerb, S. Saulnier, O. Aaboubi, M. Uhlemann, D. Elmi, J. Amblard, Analysis of the magnetic force effect on paramagnetic species. Electroanal. Chem. 571, 85 (2004)

    Article  CAS  Google Scholar 

  20. A. Krause, M. Uhlemann, A. Gebert, L. Schultz, The effect of magnetic fields on the electrodeposition of cobalt. Electrochim. Acta 49, 4127 (2004)

    Article  CAS  Google Scholar 

  21. A. Ispas, H. Matsushima, W. Plieth, A. Bund, Influence of a magnetic field on the electrodeposition of nickel–iron alloys. Electrochim. Acta 52, 2785 (2007)

    Article  CAS  Google Scholar 

  22. M. Uhlemann, A. Krause, J.P. Chopart, A. Gebert, Electrochemical deposition of Co under the influence of high magnetic fields. J. Electrochem. Soc. 152, C817 (2005)

    Article  CAS  Google Scholar 

  23. J. Koza, M. Uhlemann, A. Gebert, L. Schultz, The effect of magnetic fields on the electrodeposition of iron. J. Solid State Electrochem. 12, 181 (2008)

    Article  CAS  Google Scholar 

  24. J.A. Koza, M. Uhlemann, A. Gebert, L. Schultz, The effect of magnetic fields on the electrodeposition of CoFe alloys. Electrochim. Acta 53, 5344 (2008)

    Article  CAS  Google Scholar 

  25. M.Y. Lin, L.W. Hourng, C.W. Kuo, The effect of magnetic force on hydrogen production efficiency in water electrolysis. Int. J. Hydrog. Energy 37, 1311 (2012)

    Article  CAS  Google Scholar 

  26. K.M. Grant, J.W. Hemmert, H.S. White, Magnetic focusing of redox molecules at ferromagnetic microelectrodes. Electrochem. Commun. 1, 319 (1999)

    Article  CAS  Google Scholar 

  27. T.Z. Fahidy, Characteristics of surfaces produced via magnetoelectrolytic deposition. Prog. Surf. Sci. 68, 155 (2001)

    Article  CAS  Google Scholar 

  28. P.R. Zabinski, A. Jarek, R. Kowalik, Effect of applied external magnetic field on electrodeposition of cobalt alloys for hydrogen evolution in 8 M NaOH. Magnetohydrodynamics 45, 275 (2009)

    Google Scholar 

  29. D. Fernández, Z. Diao, P. Dunne, J.M. Coey, Influence of magnetic field on hydrogen reduction and co-reduction in the Cu/CuSO4 system. Electrochim. Acta 28, 8664 (2010)

    Article  Google Scholar 

  30. N.V. Pardhasaradhy, Practical electroplating hand book, (Prentice Hall Incl. Pub, 1987)

  31. N. Dinodi, A.N. Shetty, Alkyl carboxylates as efficient and green inhibitors of magnesium alloy ZE41 corrosion in aqueous salt solution. Corros. Sci. 85, 411 (2014)

    Article  CAS  Google Scholar 

  32. T.Z. Fahidy, Magnetoelectrolysis. J. Appl. Electrochem. 13, 553 (1983)

    Article  CAS  Google Scholar 

  33. G. Hinds, F.E. Spada, J.M.D. Coey, T.R. Ní Mhíocháin, M.E. Lyons, Magnetic field effects on copper electrolysis. J. Phys. Chem. B 105, 9487 (2001)

    Article  CAS  Google Scholar 

  34. S. Shetty, A.C. Hegde, Electrodeposition of Sn-Ni alloy coatings for water-splitting application from alkaline medium. Metall. Mater. Trans. B. 1 (2016)

  35. R. Ojani, R. Valiollahi, J.B. Raoof, Comparison between graphene supported Pt hollow nanospheres and graphene supported Pt solid nanoparticles for hydrogen evolution reaction. Energy 74, 871 (2014)

    Article  CAS  Google Scholar 

  36. D. Merki, X. Hu, Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 4, 3878 (2011)

    Article  CAS  Google Scholar 

  37. M.E.G. Lyons, M.P. Brandon, A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J. Electroanal. Chem. 641(119) (2010)

  38. C. Lupi, A. Dell’Era, M. Pasquali, Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int. J. Hydrog. Energy 34, 2101 (2009)

    Article  CAS  Google Scholar 

  39. S.I. Pyun, H.C. Shin, J.W. Lee, J.Y. Go, Electrochemistry of insertion materials for hydrogen and lithium, (Springer, 2012)

  40. S.A. Vilekar, I. Fishtik, R. Datta, Kinetics of the hydrogen electrode reaction. J. Electrochem. Soc. 157, B1040 (2010)

    Article  CAS  Google Scholar 

  41. E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdottir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson, J.K. Nørskov, Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C114, 18182 (2010)

    Google Scholar 

  42. M. Gong, W. Zhou, M.C. Tsai, J. Zhou, M. Guan, M.C. Lin, B. Zhang, Y. Hu, D.Y. Wang, J. Yang, S.J. Pennycook, Nanoscale nickel oxide/nickel hetero structures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 1 (2014)

    CAS  Google Scholar 

  43. G.S. Tasić, U. Lačnjevac, M.M. Tasić, M.M. Kaninski, V.M. Nikolić, D.L. Žugić, V.D. Jović, Influence of electrodeposition parameters of Ni–W on Ni cathode for alkaline water electrolyser. Int. J. Hydrog. Energy 38, 4291 (2013)

    Article  Google Scholar 

  44. Y. Choquette, L. Brossard, A. Lasia, H. Menard, Study of the kinetics of hydrogen evolution reaction on Raney nickel composite-coated electrode by AC impedance technique. J. Electrochem. Soc. 137, 1723 (1990)

    Article  CAS  Google Scholar 

  45. A. Wieckowski, E. R. Savinova, C. G. Vayenas, Catalysis and electrocatalysis at nanoparticle surfaces, (CRC Press, 2003)

  46. L. Elias, A.C. Hegde, Modification of Ni–P alloy coatings for better hydrogen production by electrochemical dissolution and TiO2 nanoparticles. RSC Adv. 6, 66204 (2016)

    Article  CAS  Google Scholar 

  47. V.R. Rao, K.V. Bangera, A.C. Hegde, Magnetically induced electrodeposition of Zn–Ni alloy coatings and their corrosion behaviors. J. Magn. Mag. Mater. 345, 48 (2013)

    Article  CAS  Google Scholar 

  48. K. Shinohara, K. Hashimoto, R. Aogaki, Macroscopic fluid motion accompanying copper corrosion in nitric acid under a vertical magnetic field. Electrochemistry 70, 772 (2002)

    CAS  Google Scholar 

Download references

Acknowledgements

Author Sandhya Shetty is thankful to NITK, Surathkal, India, for supporting this research in the form of Institute Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ampar Chitharanjan Hegde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, S., Hegde, A.C. Magnetically Induced Electrodeposition of Ni-Mo Alloy for Hydrogen Evolution Reaction. Electrocatalysis 8, 179–188 (2017). https://doi.org/10.1007/s12678-017-0350-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-017-0350-5

Keywords

Navigation