Skip to main content
Log in

Beneficial Promotion of Underpotentially Deposited Lead Adatoms on Gold Nanorods Toward Glucose Electrooxidation

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Unquestionably, obtaining nanomaterials with high catalytic activity requires the control of their size, shape, and composition since such parameters greatly influence the properties of the electrode surface. In this study, three gold nanorods (GNRs) with different aspect ratios and surface crystallographic orientations were synthesized by wet chemical method. Underpotential deposition (UPD) is an electrochemical technique used with lead adatoms for revealing the low-Miller-index Au(hkl) facets of the as-prepared nanorods. As catalyst effectiveness strongly depends on the nanoparticle surface and the nature of the electrolyte, lead adatom-modified Au electrode materials were made to catalyze the glucose oxidation in alkaline medium in which it is more reactive. It was found that the glucose-to-gluconolactone oxidation peak shifted of 50 mV toward lower potentials, indicating a surface energy gain of the anode material due to the UPDPb modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Feng, F. Wang, Z. Chen, Sens. Actuator B-Chem 138, 539 (2009)

    Article  CAS  Google Scholar 

  2. S. Hebie, T. W. Napporn, C. Morais, K. B. Kokoh, ChemPhysChem 17, 1454 (2016)

    Article  CAS  Google Scholar 

  3. S. Hebié, Y. Holade, K. Maximova, M. Sentis, P. Delaporte, K. B. Kokoh, T. W. Napporn, A. V. Kabashin, ACS Catal. 5, 6489 (2015)

    Article  Google Scholar 

  4. S. Hebié, K. B. Kokoh, K. Servat, T. W. Napporn, Gold Bull. 46, 311 (2013)

    Article  Google Scholar 

  5. O. Hazzazi, C. Harris, P. Wells, G. Attard, Top. Catal. 54, 1392 (2011)

    Article  CAS  Google Scholar 

  6. M. Tominaga, T. Shimazoe, M. Nagashima, H. Kusuda, A. Kubo, Y. Kuwahara, I. Taniguchi, J. Electroanal. Chem. 590, 37 (2006)

    Article  CAS  Google Scholar 

  7. M. Tominaga, T. Shimazoe, M. Nagashima, I. Taniguchi, Electrochem. Commun. 7, 189 (2005)

    Article  CAS  Google Scholar 

  8. S. Cho, H. Shin, C. Kang, Electrochim. Acta 51, 3781–3786 (2006)

    Article  CAS  Google Scholar 

  9. C. C. Jin, I. Taniguchi, Chem. Eng. Technol. 30, 1298 (2007)

    Article  CAS  Google Scholar 

  10. P. Tonda-Mikiela, T. W. Napporn, C. Morais, K. Servat, A. Chen, K. B. Kokoh, J. Electrochem. Soc. 159, H828 (2012)

    Article  CAS  Google Scholar 

  11. K. B. Kokoh, J. M. Léger, B. Beden, C. Lamy, Electrochim. Acta 37, 1333 (1992)

    Article  CAS  Google Scholar 

  12. M. W. Hsiao, R. R. Adžić, E. B. Yeager, J. Electrochem. Soc. 143, 759 (1996)

    Article  CAS  Google Scholar 

  13. A. Wang, X. Y. Liu, C.-Y. Mou, T. Zhang, J. Catal. 308, 258 (2013)

    Article  CAS  Google Scholar 

  14. F. Matsumoto, M. Harada, N. Koura, S. Uesugi, Electrochem. Commun. 5, 42 (2003)

    Article  CAS  Google Scholar 

  15. B. Wu, N. Zheng, Nano Today 8, 168 (2013)

    Article  Google Scholar 

  16. Z. Guo, X. Fan, L. Liu, Z. Bian, C. Gu, Y. Zhang, N. Gu, D. Yang, J. Zhang, J Colloid Interf Sci 348, 29 (2010)

    Article  CAS  Google Scholar 

  17. R. R. Adzic, M. W. Hsiao, E. B. Yeager, J. Electroanal Chem Interfacial Electrochem 260, 475 (1989)

    Article  CAS  Google Scholar 

  18. Y. Wang, E. Laborda, B. J. Plowman, K. Tschulik, K. R. Ward, R. G. Palgrave, C. Damm, R. G. Compton, Phys. Chem. Chem. Phys. 16, 3200–3208 (2014)

    Article  CAS  Google Scholar 

  19. L. A. Larew, D. C. Johnson, J. Electroanal Chem. Interfacial Electrochem 262, 167 (1989)

    Article  CAS  Google Scholar 

  20. K. B. Kokoh, J. M. Léger, B. Beden, H. Huser, C. Lamy, Electrochim. Acta 37, 1909 (1992)

    Article  CAS  Google Scholar 

  21. M. P. Mercer, D. Plana, D. J. Fermίn, D. Morgan, N. Vasiljevic, Langmuir 31, 10904 (2015)

    Article  CAS  Google Scholar 

  22. J. Hernández, J. Solla-Gullón, E. Herrero, J. Electroanal. Chem. 574, 185 (2004)

    Article  Google Scholar 

  23. N. Zakharchuk, S. Meyer, B. Lange, F. Scholz, Croat. Chem. Acta 73, 667 (2000)

    CAS  Google Scholar 

  24. A. Hamelin, J. Lipkowski, J. Electroanal. Chem. Interfacial Electrochem 171, 317 (1984)

    Article  CAS  Google Scholar 

  25. A. Hamelin, J. Electroanal. Chem. Interfacial Electrochem 165, 167 (1984)

    Article  CAS  Google Scholar 

  26. K. Engelsmann, W. J. Lorenz, E. Schmidt, J Electroanal Chem Interfacial Electrochem 114, 1 (1980)

    Article  CAS  Google Scholar 

  27. K. Engelsmann, W. J. Lorenz, E. Schmidt, J Electroanal Chem Interfacial Electrochem 114, 11 (1980)

    Article  CAS  Google Scholar 

  28. W. Zhang, H. Lin, H. Lu, D. Liu, J. Yin, Z. Lin, J. Mater. Chem. A 3, 4399 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the CNRS and the Region Poitou-Charentes for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Boniface Kokoh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hebié, S., Napporn, T.W. & Kokoh, K.B. Beneficial Promotion of Underpotentially Deposited Lead Adatoms on Gold Nanorods Toward Glucose Electrooxidation. Electrocatalysis 8, 67–73 (2017). https://doi.org/10.1007/s12678-016-0343-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0343-9

Keywords

Navigation