Skip to main content
Log in

Pt Nanoparticles Supported on Niobium-Doped Tin Dioxide: Impact of the Support Morphology on Pt Utilization and Electrocatalytic Activity

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Two synthesis routes were used to design high surface area niobium-doped tin dioxide (Nb-doped SnO2, NTO) nanostructures with either loose-tube (fibre-in-tube) morphology using electrospinning or aerogel morphology using a sol-gel process. A higher specific surface area but a lower apparent electrical conductivity was obtained on the NTO aerogel compared to the loose tubes. The NTO aerogels and loose tubes and two reference materials (undoped SnO2 aerogel and Vulcan XC72) were platinized with a single colloidal suspension and tested as oxygen reduction reaction (ORR) electrocatalysts for proton-exchange membrane fuel cell (PEMFC) applications. The specific surface area of the supports strongly influenced the mass fraction of deposited Pt nanoparticles (NPs) and their degree of agglomeration. The apparent electrical conductivity of the supports determined the electrochemically active surface area (ECSA) and the catalytic activity of the Pt NPs for the ORR. Based on these findings, electrospinning appears to be the preferred route to synthesize NTO supports for PEMFC cathode application.

On top : SEM images of the synthesized supports : 5.0 at.% Nb-doped SnO2 aerogel (NTO-AG) and loose tubes (NTO-LT) - At the bottom : specific activity (SA0.90) and mass activity (MA0.90) of the synthesized electrocatalysts for the oxygen reduction reaction (ORR) determined at E = 0.90 V vs. RHE as a function of the conductivity of the supports

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Lamibrac, G. Maranzana, O. Lottin, J. Dillet, J. Mainka, S. Didierjean, A. Thomas, C. Moyne, J Power Sources 196, 9451 (2011)

    Article  CAS  Google Scholar 

  2. J. Durst, A. Lamibrac, F. Charlot, J. Dillet, L.F. Castanheira, G. Maranzana, L. Dubau, F. Maillard, M. Chatenet, O. Lottin, Appl Catal B Environ 138–139, 416 (2013)

    Article  Google Scholar 

  3. L. Dubau, L. Castanheira, F. Maillard, M. Chatenet, O. Lottin, G. Maranzana, J. Dillet, A. Lamibrac, J.-C. Perrin, E. Moukheiber, A. ElKaddouri, G. De Moor, C. Bas, L. Flandin, N. Caqué, Wiley Interdiscip Rev Energy Environ 3, 540 (2014)

    Article  CAS  Google Scholar 

  4. L. Castanheira, W.O. Silva, F.H.B. Lima, A. Crisci, L. Dubau, F. Maillard, ACS Catal 5, 2184 (2015)

    Article  CAS  Google Scholar 

  5. L. Castanheira, L. Dubau, M. Mermoux, G. Berthomé, N. Caqué, E. Rossinot, M. Chatenet, F. Maillard, ACS Catal 4, 2258 (2014)

    Article  CAS  Google Scholar 

  6. S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, J Power Sources 176, 444 (2008)

    Article  CAS  Google Scholar 

  7. F. Maillard, A. Bonnefont, F. Micoud, Electrochem Commun 13, 1109 (2011)

    Article  CAS  Google Scholar 

  8. N. Linse, L. Gubler, G.G. Scherer, A. Wokaun, Electrochim Acta 56, 7541 (2011)

    Article  CAS  Google Scholar 

  9. L.M. Roen, C.H. Paik, T.D. Jarvi, Electrochem Solid-State Lett 7, A19 (2004)

    Article  CAS  Google Scholar 

  10. S.J. Tauster, S.C. Fung, R.L. Garten, J Am Chem Soc 100, 170 (1978)

    Article  CAS  Google Scholar 

  11. S.J. Tauster, S.C. Fung, Occur among Bin Oxides Groups IIA-VB 55, 29 (1978)

    CAS  Google Scholar 

  12. S.J. Tauster, S.C. Fung, R.T.K. Baker, J.A. Horsley, Science 211, 1121 (1981)

    Article  CAS  Google Scholar 

  13. M.G. Sanchez, J.L. Gazquez, J Catal 104, 120 (1987)

    Article  CAS  Google Scholar 

  14. U. Diebold, Surf Sci Rep 48, 53 (2003)

    Article  CAS  Google Scholar 

  15. Q. Fu, T. Wagner, S. Olliges, H.D. Carstanjen, J Phys Chem B 109, 944 (2005)

    Article  CAS  Google Scholar 

  16. Q. Fu, T. Wagner, Surf Sci Rep 62, 431 (2007)

    Article  CAS  Google Scholar 

  17. F. Micoud, F. Maillard, A. Gourgaud, M. Chatenet, Electrochem Commun 11, 651 (2009)

    Article  CAS  Google Scholar 

  18. F. Micoud, F. Maillard, A. Bonnefont, N. Job, M. Chatenet, Phys Chem Chem Phys 5, 1182–1193 (2010)

    Article  Google Scholar 

  19. V.A. O’Shea, M.C.A. Galván, A.E.P. Prats, J.M. Campos-Martin, J.L.G. Fierro, Chem Commun (Camb) 47, 7131 (2011)

  20. G. Cognard, G. Ozouf, C. Beauger, G. Berthomé, D. Riassetto, L. Dubau, R. Chattot, M. Chatenet, F. Maillard, Appl Catal B Environ 201, 381 (2017)

    Article  CAS  Google Scholar 

  21. Y. Takabatake, Z. Noda, S.M. Lyth, A. Hayashi, K. Sasaki, Int J Hydrogen Energy 39, 5074 (2014)

    Article  CAS  Google Scholar 

  22. F. Takasaki, S. Matsuie, Y. Takabatake, Z. Noda, A. Hayashi, Y. Shiratori, K. Ito, K. Sasaki, J Electrochem Soc 158, B1270 (2011)

    Article  CAS  Google Scholar 

  23. Y. Senoo, K. Taniguchi, K. Kakinuma, M. Uchida, H. Uchida, S. Deki, M. Watanabe, Electrochem Commun 51, 37 (2015)

    Article  CAS  Google Scholar 

  24. A. Masao, S. Noda, F. Takasaki, K. Ito, K. Sasaki, Electrochem Solid-State Lett 12, B119 (2009)

    Article  CAS  Google Scholar 

  25. S. Cavaliere, S. Subianto, I. Savych, M. Tillard, D.J. Jones, J. Rozière, J Phys Chem C 117, 18298 (2013)

    Article  CAS  Google Scholar 

  26. E. Fabbri, A. Rabis, R. Kötz, T.J. Schmidt, Phys Chem Chem Phys 16, 13672 (2014)

    Article  CAS  Google Scholar 

  27. K. Kakinuma, Y. Chino, Y. Senoo, M. Uchida, T. Kamino, H. Uchida, S. Deki, M. Watanabe, Electrochim Acta 110, 316 (2013)

    Article  CAS  Google Scholar 

  28. Y. Senoo, K. Kakinuma, M. Uchida, H. Uchida, S. Deki, M. Watanabe, RSC Adv 4, 32180 (2014)

    Article  CAS  Google Scholar 

  29. J. Suffner, S. Kaserer, H. Hahn, C. Roth, F. Ettingshausen, Adv Energy Mater 1, 648 (2011)

    Article  CAS  Google Scholar 

  30. M. Sudan Saha, R. Li, M. Cai, X. Sun, Electrochem Solid-State Lett 10, B130 (2007)

    Article  Google Scholar 

  31. Y. Fan, J. Liu, H. Lu, P. Huang, D. Xu, Electrochim Acta 76, 475 (2012)

    Article  CAS  Google Scholar 

  32. H. Zhang, C. Hu, X. He, L. Hong, G. Du, Y. Zhang, J Power Sources 196, 4499 (2011)

    Article  CAS  Google Scholar 

  33. M. Dou, M. Hou, D. Liang, W. Lu, Z. Shao, B. Yi, Electrochim Acta 92, 468 (2013)

    Article  CAS  Google Scholar 

  34. G. Ozouf, C. Beauger, J Mater Sci 51, 5305 (2016)

    Article  CAS  Google Scholar 

  35. M. Batzill, U. Diebold, Prog Surf Sci 79, 47 (2005)

    Article  CAS  Google Scholar 

  36. C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D.L. Yang, M.L. Perry, T.D. Jarvi, Electrochem Solid State Lett 8, A273 (2005)

    Article  CAS  Google Scholar 

  37. L. Dubau, M. Lopez-Haro, L. Castanheira, J. Durst, M. Chatenet, P. Bayle-Guillemaud, L. Guétaz, N. Caqué, E. Rossinot, F. Maillard, Appl Catal B Environ 142–143, 801 (2013)

    Article  Google Scholar 

  38. L. Dubau, L. Castanheira, M. Chatenet, F. Maillard, J. Dillet, G. Maranzana, S. Abbou, O. Lottin, G. De Moor, A. El Kaddouri, C. Bas, L. Flandin, E. Rossinot, N. Caqué, Int J Hydrogen Energy 36, 21902-21914 (2014)

    Google Scholar 

  39. L. Castanheira, L. Dubau, F. Maillard, Electrocatalysis 5, 125 (2014)

    Article  CAS  Google Scholar 

  40. L. Dubau, L. Castanheira, G. Berthomé, F. Maillard, Electrochim Acta 110, 273 (2013)

    Article  CAS  Google Scholar 

  41. Z. Zhao, L. Castanheira, L. Dubau, G. Berthomé, A. Crisci, F. Maillard, J Power Sources 230, 236 (2013)

    Article  Google Scholar 

  42. A.F. Mayadas, M. Shatzkes, Phys Rev B 1, 1382 (1970)

    Article  Google Scholar 

  43. Y. Wang, T. Brezesinski, M. Antonietti, B. Smarsly, ACS Nano 3, 1373 (2009)

    Article  CAS  Google Scholar 

  44. I. Savych, S. Subianto, Y. Nabil, S. Cavaliere, D. Jones, J. Rozière, Phys Chem Chem Phys 17, 16970 (2015)

    Article  CAS  Google Scholar 

  45. I. Savych, J. Bernard D’Arbigny, S. Subianto, S. Cavaliere, D.J. Jones, J. Rozière, J Power Sources 257, 147 (2014)

    Article  CAS  Google Scholar 

  46. L.J. Van der Pauw, Philips Res Reports 13, 1 (1958)

    Google Scholar 

  47. S. Brunauer, P.H. Emmett, E. Teller, J Am Chem Soc 60, 309 (1938)

    Article  CAS  Google Scholar 

  48. S. Cavaliere, I. Jiménez-Morales, G. Ercolano, I. Savych, D. Jones, J. Rozière, Chem Electro Chem (2015). doi:10.1002/celc.201500330

    Google Scholar 

  49. J.F. Boyle, K.A. Jones, J Electron Mater 6, 717 (1977)

    Article  CAS  Google Scholar 

  50. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sens Actuators, B 3, 147 (1991)

    Article  CAS  Google Scholar 

  51. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, J Mater Sci 27, 963 (1992)

    Article  CAS  Google Scholar 

  52. A.B. Suryamas, G.M. Anilkumar, S. Sago, T. Ogi, K. Okuyama, Catal Commun 33, 11 (2013)

    Article  CAS  Google Scholar 

  53. D. Szczuko, J. Werner, S. Oswald, G. Behr, K. Wetzig, Appl Surf Sci 179, 301 (2001)

    Article  CAS  Google Scholar 

  54. D. Dobler, S. Oswald, J. Werner, W. Arabczyk, G. Behr, K. Wetzig, Chem Phys 286, 375 (2003)

    Article  CAS  Google Scholar 

  55. S. Oswald, G. Behr, D. Dobler, J. Werner, K. Wetzig, W. Arabczyk, Anal Bioanal Chem 378, 411 (2004)

    Article  CAS  Google Scholar 

  56. Y. Cross, D.R. Pyke, J Catal 58, 61 (1979)

    Article  CAS  Google Scholar 

  57. Y. Boudeville, F. Figueras, M. Forissier, J.L. Portefaix, J.C. Vedrine, J Catal 58, 52 (1979)

    Article  CAS  Google Scholar 

  58. E. Oakton, J. Tillier, G. Siddiqi, Z. Mickovic, O. Sereda, A. Fedorov, C. Copéret, New J Chem 40, 2655 (2016)

    Article  CAS  Google Scholar 

  59. M.A. Aegerter, Sol Energy Mater Sol Cells 68, 401 (2001)

    Article  CAS  Google Scholar 

  60. F. Maillard, P. Simonov, E.R. Savinova, in Carbon Mater. Catal, ed. by P. Serp, J.L. Figueiredo (John Wiley & Sons, Inc, New York, 2009), pp. 429–480

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Pierre Ilbizian for supercritical drying and Suzanne Jacomet for SEM observations of the TO and NTO aerogels.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gwenn Cognard or Frédéric Maillard.

Ethics declarations

Funding

The authors acknowledge financial support from the French National Research Agency through the SURICAT project (grant number ANR-12-PRGE-007) and the European Union’s Seventh Framework Program for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement No. 325239 (FCH-JU project Nano-CAT) as well as Capenergies and Tenerrdis. MC thanks the French IUF for its support. SC acknowledges the European Research Council under the European Union’s Seventh Framework Programme (FP/2007 − 2013)/ERC Grant Agreement No. 306682.

Conflict of interest

The authors declare that they have no conflict of interest (financial or non-financial).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cognard, G., Ozouf, G., Beauger, C. et al. Pt Nanoparticles Supported on Niobium-Doped Tin Dioxide: Impact of the Support Morphology on Pt Utilization and Electrocatalytic Activity. Electrocatalysis 8, 51–58 (2017). https://doi.org/10.1007/s12678-016-0340-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0340-z

Keywords

Navigation