Skip to main content

Advertisement

Log in

The Hydrogen Evolution Reaction on Rhenium Metallic Electrodes: A Selected Review and New Experimental Evidence

Electrocatalysis Aims and scope Submit manuscript

Abstract

The volcano plots reported in the field of electrocatalysis utilize data with a difference of three orders of magnitude between the worst and the best rhenium electrocatalytic activity toward the hydrogen evolution reaction (HER). However, the commonly used mean value of the exchange density current (j 0) of the HER on rhenium is log j 0 = −2.9 A cm−2, which is higher than the value used for platinum (log j 0 = −3.3 A cm−2). This fact seems to contradict Sabatier’s principle and points to the possibility that this value corresponds more to rhenized surfaces than to metallic rhenium. Rhenized surfaces are primarily composed of a mixture of oxides; therefore, the electrocatalytic behavior is attributed to these thin films rather than to metallic rhenium. In addition, a selected review of rhenized electrodes is included herein because these issues have not been considered in the electrocatalysis literature at the present time. We initially believed that the kinetic parameters might have been overestimated due to the formation of rhenide ion or rhenium hydride species; however, no evidence of the formation of these species was found. Our experimental mean value of the exchange current density of the HER on metallic rhenium is 7 × 10−5 A cm−2 in acidic solution. Therefore, our results are in accordance with Sabatier’s principle, which states that a weak adsorption energy of hydrogen on rhenium (energy, 6.9 kJ mol−1) results in a slow rate of reaction (log j 0 = −4.2 A cm−2), whereas an intermediate adsorption energy of hydrogen on platinum (12 kJ mol−1) produces a fast reaction (log j 0 = −3.3 A cm−2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. G. Pecherskaya, V.V. Stender, Zhur. Fiz. Khim. 24, 856 (1950). Abstracts from SciFinder® ACS (2013)

  2. M.J. Joncich, L.S. Stewart, F.A. Posey, J. Electrochem. Soc. 112, 717 (1965)

    Article  CAS  Google Scholar 

  3. a) V. L. Krasikov, Elektrokhimiya, 17, 1518 (1981); b) V.L. Krasikov, Elektrokhimiya, 19, 209 (1983).

  4. S. Szabó, I. Bakos et al., Proceedings of the 7th International Symposium on Scientific Bases for the Preparation of Heterogeneous Catalysts (Elsevier, Amsterdam, 1998), pp. 269–276

    Chapter  Google Scholar 

  5. J.H. Chun, S.K. Jeon, K.H. Ra, J.Y. Chun, Int. J. Hydrogen Energy 30, 485 (2005)

    Article  CAS  Google Scholar 

  6. E. Méndez, M.F. Cerdá, A.M. Castro-Luna, C.F. Zinola, C. Kremer, M.E. Martins, J. Colloid Interface Sci. 263, 119 (2003)

    Article  Google Scholar 

  7. S. Trasatti, in Advances in Electrochemistry and Electrochemical Engineering, ed. by H. Gerisher, C.W. Tobias (Wiley, New York, 1977), p. 19

    Google Scholar 

  8. W. Schmickler, E. Santos, Interfacial Electrochemistry, 2nd edn. (Springer, Berlin, 2010), p. 166

    Book  Google Scholar 

  9. A.J. Arvia, A.E. Bolzan, M.A. Pasquale, in Catalysis in Electrochemistry: From Fundamentals to Strategies for Fuel Cell Development, ed. by E. Santos, W. Schmickler (Wiley, USA, 2011), p. 35

    Google Scholar 

  10. S. Trasatti, J. Electroanal. Chem. 39, 163 (1972)

    Article  CAS  Google Scholar 

  11. a) J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc., 152, J23 (2005), b) K.Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 153, L33 (2006)

  12. Y.Y. Andreev, Prot. Met. Phys. Chem. Surf. 48, 290 (2012)

    Article  CAS  Google Scholar 

  13. N. Eliaz, E. Gileadi, in Modern Aspects of Electrochemistry, ed. by C.G. Vayenas, R.E. White, M.E. Gamboa-Aldeco, vol. 42 (Springer, New York, 2008), p. 268. 270–279

    Chapter  Google Scholar 

  14. B.P. Hahn, R.A. May, K.J. Stevenson, Langmuir 23, 10837 (2007)

    Article  CAS  Google Scholar 

  15. R.J. Magee, T.J. Cardwell, in Encyclopedia of Electrochemistry of the Elements, ed. by A.J. Bard, vol. 2 (Marcel Dekker, New York, 1973), pp. 129–131. 133-136,145-146, 149, 175–177

    Google Scholar 

  16. R. Schrebler, P. Cury, M. Orellana, H. Gomez, R. Cordova, E.A. Dalchiele, Electrochim. Acta 46, 4309 (2001)

    Article  CAS  Google Scholar 

  17. J.O. Zerbino, A.M. Castro-Luna, C.F. Zinola, E. Méndez, M.E. Martins, J. Electroanal. Chem. 521, 168 (2002)

    Article  CAS  Google Scholar 

  18. R. Schrebler, P. Cury, C. Suárez, E. Muñoz, F. Vera, R. Córdova, H. Gómez, J.R. Ramos-Barrado, D. Leinen, E.A. Dalchiele, Thin Solid Films 483, 50 (2005)

    Article  CAS  Google Scholar 

  19. M.H. Miles, M.A. Thomason, J. Electrochem. Soc. 123, 1459 (1976)

    Article  CAS  Google Scholar 

  20. J. Gómez, J.I. Gardiazábal, R. Schrebler, H. Gómez, R. Córdova, J. Electroanal. Chem. 260, 113 (1989)

    Article  Google Scholar 

  21. M.H. Miles, J. Electroanal. Chem. 60, 89–96 (1975)

    Article  CAS  Google Scholar 

  22. B.V. Tilak, A.C. Ramamurthy, B.E. Conway, Proceedings of the Indian Academy of Sciences-Chemical Sciences, vol. 97 (Springer, India, 1986), p. 366

    Google Scholar 

  23. G.E.F. Lundell, H.B. Knowles, H.B. Bur, Stand. J. Res. 18, 629 (1937)

    Article  CAS  Google Scholar 

  24. L. Pauling, Chem. Eng. News 25, 297 (1947)

    Article  Google Scholar 

  25. J.B. Bravo, E. Griswold, J. Kleinberg, J. Phys. Chem. 58, 18 (1954)

    Article  CAS  Google Scholar 

  26. J.W. Cobble, J. Phys. Chem. 61, 727 (1957)

    Article  CAS  Google Scholar 

  27. A.P. Ginsberg, J.M. Miller, J.R. Cavanaugh, B.P. Dailey, Nature 185, 528 (1960)

    Article  CAS  Google Scholar 

  28. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Butterworth-Heinemann, Oxford, 1997), p. 1048. 1050, 1054, 1058

    Google Scholar 

  29. J.E. Ellis, Inorg. Chem. 45, 3167 (2006)

    Article  CAS  Google Scholar 

  30. N. de Zoubov, M. Pourbaix, in Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE, Texas, 1974), pp. 300–306

  31. G. Inzelt, in The Encyclopedia of Electrochemistry, ed. by A.J. Bard, M. Stratman, F. Scholz, C.J. Pickett, vol. 7 (Wiley-VCH, Weinheim, 2006), pp. 35–36

    Google Scholar 

  32. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution (Marcel Dekker, New York, 1985), pp. 444–451

    Google Scholar 

  33. M.S. Antelman, Encyclopedia of Chemical Electrode Potentials (Plenum Press, New York, 1982), p. 176

    Book  Google Scholar 

  34. A.J. Dean, Lange’s Handbook of Chemistry, 15th edn. (McGraw-Hill, New York, 1999), p. 6.110

    Google Scholar 

  35. N. Takeno, Atlas of Eh-pH Diagrams (National Institute of Advanced Industrial Science and Technology, Japan, 2005), p. 211

    Google Scholar 

  36. S.G. Bratsch, J. Phys. Chem. Ref. Data 18, 1 (1989)

    Article  CAS  Google Scholar 

  37. C.G. Zoski, Handbook of Electrochemistry (Elsevier, Netherlands, 2007), p. 456

    Google Scholar 

  38. S. Krause, in Instrumentation and Electroanalytical Chemistry, ed. by A.J. Bard, M. Stratmann, vol. 3 (Wiley-VCH, Berlin, 2003), p. 202

    Google Scholar 

  39. P. Wehner, J.C. Hindman, J. Am. Chem. Soc. 75, 2873 (1953)

    Article  CAS  Google Scholar 

  40. C.L. Rulfs, P.J. Elving, J. Am. Chem. Soc. 73, 3284 (1951)

    Article  CAS  Google Scholar 

  41. C.L. Rulfs, P.J. Elving, J. Am. Chem. Soc. 73, 3287 (1951)

    Article  CAS  Google Scholar 

  42. Rhenium, ASM Handbook, vol. 2 (10th (ASM International, Ohio, 1998), pp. 4843–4844

    Google Scholar 

  43. H. Kita, J. Res. Inst. Catal. Hokkaido Univ 13, 151 (1965)

    CAS  Google Scholar 

  44. V.I. Kopylets, Mater Sci 35, 438 (1999)

    Article  CAS  Google Scholar 

  45. A.J. Appleby, H. Kita, M. Chemla, G. Bronoel, in Encyclopedia of Electrochemistry of the Elements, ed. by A.J. Bard, vol. 9 (M. Dekke, New York, 1982), pp. 456–457

    Google Scholar 

  46. M.M. Jaksic, J. New Mater. Electrochem. Syst. 3, 153 (2000)

    CAS  Google Scholar 

  47. J.O. Zerbino, A.M. Castro-Luna, C.F. Zinola, E. Méndez, M.E. Martins, J. Braz. Chem. Soc. 13, 510 (2002)

    Article  CAS  Google Scholar 

  48. A.V. Uscategui, E. Mosquera, L. Cifuentes, Mater. Lett. 94, 44 (2013)

    Article  CAS  Google Scholar 

  49. S. Szabo, I. Bakos, J. Electroanal. Chem. 492, 103 (2000)

    Article  CAS  Google Scholar 

  50. M. Castriota, E. Cazzanelli, G. Das, R. Kalendarev, A. Kuzmin, S. Marino, G. Mariotto, J. Purans, N. Scaramuzza, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. 474, 1 (2007)

    Article  CAS  Google Scholar 

  51. J.S. Lord, W.G. Williams, Solid State Ion. 145, 381 (2001)

    Article  CAS  Google Scholar 

  52. M. Calatayud, F. Tielens, in Catalysis in Electrochemistry: From Fundamentals to Strategies for Fuel Cell Development, ed. by E. Santos, W. Schmickler (Wiley, New York, 2011), p. 395

    Google Scholar 

  53. B.E. Conway, G. Jerkiewicz, Electrochim. Acta 45, 4075 (2000)

    Article  CAS  Google Scholar 

  54. B.E. Conway, G. Jerkiewicz, Solid State Ion. 150, 93 (2002)

    Article  CAS  Google Scholar 

  55. G. Jerkiewicz, Electrocatalysis 1, 17 (2010)

    Google Scholar 

Download references

Acknowledgments

This work was performed under the support of the CONACYT (project numbers 102018 and 224366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Orozco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Garcia, R., Ortega-Zarzosa, G., Rincón, M.E. et al. The Hydrogen Evolution Reaction on Rhenium Metallic Electrodes: A Selected Review and New Experimental Evidence. Electrocatalysis 6, 263–273 (2015). https://doi.org/10.1007/s12678-014-0240-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0240-z

Keywords

Navigation