Skip to main content

Advertisement

Log in

Use of a Dual Arrangement of Flow Cells for Electrochemical Decontamination of Aqueous Solutions Containing Synthetic Dyes

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The present study was motivated by innovative reports published by De Battisti and co-workers (Martínez-Huitle et al., Electrochim Acta 50:949, 2004; Martínez-Huitle et al., J Appl Electrochem 35:1087, 2005) in 2004, on the electrochemical oxidation of chloroanilic and oxalic acids using electrolytic flow cell with parallel plate electrodes. These studies were few of the pioneering studies employing different design and configuration of electrochemical flow cells. Therefore, in this work, the applicability of single flow cell and dual flow cell (serial mode of SFC) systems was investigated for removing organic pollutants. Galvanostatic electrolyses were performed using the two electrochemical systems for degrading synthetic dye effluents (Remazol Red RB and Novacron Yellow), employing as electrocatalytic materials: Ti/Pt and Ti/Pt–SbSn. The electrochemical treatment of dye solutions led to complete discoloration and partial organic matter removal at different operating conditions (current density and flow cell configuration). The influence of these parameters was examined, in order to compare the use of single flow cell or dual flow cell, based on the energy consumption and costs. From the results obtained using dual flow cell configuration; higher color and organic matter removals were achieved in short times of electrolysis, confirming that this treatment process can be a suitable pre-treatment alternative for depuration of textile effluents decreasing the energy consumed when a single flow cell is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.A. Martínez-Huitle, E. Brillas, Appl. Catal. B Environ. 87, 105 (2009). doi:10.1016/j.apcatb.2008.09.017

    Article  Google Scholar 

  2. S. Garcia-Segura, S. Dosta, J.M. Guilemany, E. Brillas, Appl. Catal. B Environ. 132–133, 142 (2013). doi:10.1016/j.apcatb.2012.11.037

    Article  Google Scholar 

  3. S. Garcia-Segura, A. El-Ghenymy, F. Centellas, R.M. Rodríguez, C. Arias, J.A. Garrido, P.L. Cabot, E. Brillas, J. Electroanal. Chem. 681, 36 (2012). doi:10.1016/j.jelechem.2012.06.002

    Article  CAS  Google Scholar 

  4. C. Flox, E. Brillas, A. Savall, K. Groenen-Serrano, Curr. Org. Chem. 16, 1960 (2012)

    Article  CAS  Google Scholar 

  5. G.R. De Oliveira, N.S. Fernandes, J.V.D. Melo, D.R. Da Silva, C. Urgeghe, C.A. Martínez-Huitle, Chem. Eng. J. 168, 208 (2011). doi:10.1016/j.cej.2010.12.070

    Article  Google Scholar 

  6. A.M.S. Solano, C.K.C. Araújo, J.V. Melo, J.M. Peralta-Hernandez, D.R. Silva, C.A. Martínez-Huitle, Appl. Catal. B Environ. 130–131, 112 (2013). doi:10.1016/j.apcatb.2012.10.023

    Article  Google Scholar 

  7. C.A. Martínez-Huitle, E.V. Dos Santos, D.M. De Araújo, M. Panizza, J. Electroanal. Chem. 674, 103 (2012). doi:10.1016/j.jelechem.2012.02.005

    Article  Google Scholar 

  8. G.M. Hasselman, D.F. Watson, J.R. Stromberg, D.F. Bocian, D. Holten, J.S. Lindsey, G.J. Meyer, J. Phys. Chem. B 110, 25430 (2006). doi:10.1021/jp064547x

    Article  CAS  Google Scholar 

  9. E. Forgacs, T. Cserhati, G. Oros, Environ. Int. 30, 953 (2004). doi:10.1016/j.envint.2004.02.001

    Article  CAS  Google Scholar 

  10. C.A. Martínez-Huitle, S. Ferro, Chem. Soc. Rev. 35, 1324 (2006). doi:10.1039/B517632H

    Article  Google Scholar 

  11. M. Panizza, G. Cerisola, Chem. Rev. 109, 6541 (2009). doi:10.1021/cr9001319

    Article  CAS  Google Scholar 

  12. C.A. Martínez-Huitle, M.A. Quiroz, C. Comninellis, S. Ferro, A. De Battisti, Electrochim. Acta 50, 949 (2004). doi:10.1016/j.electacta.2004.07.035

    Article  Google Scholar 

  13. C.A. Martínez-Huitle, S. Ferro, A. De Battisti, J. Appl. Electrochem. 35, 1087 (2005). doi:10.1007/s10800-005-9003-0

    Article  Google Scholar 

  14. A. Lopes, S. Martins, A. Morao, M. Magrinho, I. Goncalves, Port. Electrochim. Acta 22, 279 (2004)

    Article  CAS  Google Scholar 

  15. Y. Xiong, P.J. Strunk, H. Xia, X. Zhu, H.T. Karlsson, Water Res. 35, 4226 (2001). doi:10.1016/S0043-1354(01)00147-6

    Article  CAS  Google Scholar 

  16. L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, J. Hazard. Mater. B 137, 1182 (2006). doi:10.1016/j.jhazmat.2006.04.008

    Article  CAS  Google Scholar 

  17. L. Fan, Y. Zhou, W. Yang, G. Chen, F. Yang, Dyes Pigments 76, 440 (2008). doi:10.1016/j.dyepig.2006.09.013

    Article  CAS  Google Scholar 

  18. Z. Shen, W. Wang, J. Jia, J. Ye, X. Feng, A. Peng, J. Hazard. Mater. B 84, 107 (2001). doi:10.1016/S0304-3894(01)00201-1

    Article  CAS  Google Scholar 

  19. M.J. Pacheco, M.L.F. Ciríaco, A. Lopes, I.C. Gonc¸alves, M.R. Nunes, M.I. Pereira, Port. Electrochim. Acta 24, 273 (2006)

    Article  CAS  Google Scholar 

  20. Z.M. Shen, D. Wu, J. Yang, T. Yuan, W.H. Wang, J.P. Jia, J. Hazard. Mater. B 131, 90 (2006). doi:10.1016/j.jhazmat.2005.09.010

    Article  CAS  Google Scholar 

  21. P.A. Carneiro, M.E. Osugi, C.S. Fugivara, N. Boralle, M. Furlan, M.V.B. Zanoni, Chemosphere 59, 431 (2005). doi:10.1016/j.chemosphere.2004.10.043

    Article  CAS  Google Scholar 

  22. C. Cameselle, M. Pazos, M.A. Sanroman, Chemosphere 60, 1080 (2005). doi:10.1016/j.chemosphere.2005.01.018

    Article  CAS  Google Scholar 

  23. Y. Lei, Z. Shen, X. Chen, J. Jia, W. Wang, Water SA 32, 205 (2006)

    CAS  Google Scholar 

  24. M. Cerón-Rivera, M.M. Dávila-Jiménez, M.P. Elizalde-González, Chemosphere 55, 1 (2004). doi:10.1016/j.chemosphere.2003.10.060

    Article  Google Scholar 

  25. H.S. Awad, N. Abo Galwa, Chemosphere 61, 1327 (2005). doi:10.1016/j.chemosphere.2005.03.054

    Article  CAS  Google Scholar 

  26. A. Socha, E. Sochocka, R. Podsiadły, J. Sokołowska, Color. Technol. 122, 207 (2006). doi:10.1111/j.1478-4408.2006.00027x

    Article  CAS  Google Scholar 

  27. M. Panizza, G. Cerisola, Appl. Catal. B Environ. 75, 95 (2007). doi:10.1016/j.apcatb.2007.04.001

    Article  CAS  Google Scholar 

  28. T. Bechtold, A. Turcanu, W. Schrott, Diamond Relate. Mater. 15, 1513 (2006). doi:10.1016/j.diamond.2005.12.026

    Article  CAS  Google Scholar 

  29. P. Canizares, A. Gadri, J. Lobato, B. Nasr, R. Paz, M.A. Rodrigo, C. Saez, Ind. Eng. Chem. Res. 45, 3468 (2006). doi:10.1021/ie051427n

    Article  CAS  Google Scholar 

  30. C. Saez, M. Panizza, M.A. Rodrigo, G. Cerisola, J. Chem. Technol. Biotechnol. 82, 575 (2007). doi:10.1002/jctb.1703

    Article  CAS  Google Scholar 

  31. M. Faouzi, P. Canizares, A. Gadri, J. Lobato, B. Nasr, R. Paz, M.A. Rodrigo, C. Saez, Electrochim. Acta 52, 325 (2006). doi:10.1016/j.electacta.2006.05.011

    Article  CAS  Google Scholar 

  32. P. Canizares, B. Louhichi, A. Gadri, B. Nasr, R. Paz, M.A. Rodrigo, C. Saez, J. Hazard. Mater. 146, 552 (2007). doi:10.1016/j.jhazmat.2007.04.085

    Article  CAS  Google Scholar 

  33. E. Butron, M.E. Juarez, M. Solis, M. Teutli, I. Gonzalez, J.L. Nava, Electrochim. Acta 52, 6888 (2007). doi:10.1016/j.electacta.2007.04.108

    Article  CAS  Google Scholar 

  34. M. Catanho, G.R.P. Malpass, A.J. Motheo, Appl. Catal. B Environ. 62, 193 (2006). doi:10.1016/j.apcatb.2005.07.011

    Article  CAS  Google Scholar 

  35. M. Panizza, A. Barbucci, R. Ricotti, G. Cerisola, Sep. Purif. Technol. 54, 382 (2007). doi:10.1016/j.seppur.2006.10.010

    Article  CAS  Google Scholar 

  36. M. Panizza, G. Cerisola, J. Hazard. Mater. 153, 83 (2007). doi:10.1016/j.jhazmat.2007.08.023

    Article  Google Scholar 

  37. A.S. Koparal, Y. Yavuz, C. Gurel, U.B. Ogutveren, J. Hazard. Mater. 145, 100 (2007). doi:10.1016/j.jhazmat.2006.10.090

    Article  CAS  Google Scholar 

  38. V. Lopez-Grimau, M.C. Gutierrez, Chemosphere 62, 106 (2006). doi:10.1016/j.chemosphere.2005.03.076

    Article  CAS  Google Scholar 

  39. A.M.S. Solano, J.H.B. Rocha, D.R. Silva, C.A. Martínez-Huitle, M. Zhou, Oxid. Commun. 35, 751 (2012)

    CAS  Google Scholar 

  40. J.L. Nava, M.A. Quiroz, C.A. Martínez-Huitle, J. Mex. Chem. Soc. 52, 249 (2008)

    CAS  Google Scholar 

  41. J.H.B. Rocha, A.M.S. Solano, N.S. Fernandes, D.R. da Silva, J.M. Peralta-Hernandez, C.A. Martínez-Huitle, Electrocatalysis 3, 1 (2012). doi:10.1007/s12678-011-0070-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

J. H. B. R. gratefully acknowledges the CAPES for PhD fellowship. The authors thank the financial support provided by PETROBRAS and CNPq. The authors thank to Dott. Christian Urgeghe from Industrie De Nora S.p.A. by the electrocatalytic materials provided.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos A. Martinez-Huitle or Marco Antonio Quiroz Alfaro.

Additional information

This paper is dedicated to Prof. Achille De Battisti, on the occasion of his retirement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, M.B., Rocha, J.H.B., de Melo, J.V. et al. Use of a Dual Arrangement of Flow Cells for Electrochemical Decontamination of Aqueous Solutions Containing Synthetic Dyes. Electrocatalysis 4, 274–282 (2013). https://doi.org/10.1007/s12678-013-0143-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-013-0143-4

Keywords

Navigation