Skip to main content
Log in

Methods of Chemical Synthesis in the Synthesis of Nanomaterial and Nanoparticles by the Chemical Deposition Method: A Review

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Chemical vapor deposition (CVD) is a vacuum deposition method used to produce high-quality and high-performance solid materials. The process is often used in the semiconductor industry to produce thin films. Microfabrication processes widely use CVD to deposit materials in various forms, including monocrystalline, polycrystalline, amorphous, and epitaxial. These materials include silicon (dioxide, carbide, nitride, oxynitride), carbon (fiber, nanofibers, nanotubes, diamond, and graphene), fluorocarbons, filaments, tungsten, titanium nitride, and various high-k dielectrics. Chemical deposition takes advantage of the chemical reaction where the product self-assembles and deposits on a suitable substrate. Chemical deposition is commonly used for generating thin nanostructured blend films of crystalline inorganic materials, such as ZnS, CuSe, InS, CdS, etc. Depending on the deposition conditions, several terms have been used, such as chemical bath deposition, CVD, and ECD. Depending on the material and the deposition conditions, different surface morphologies have been obtained, from nanopins to nanotubes to nanorods. Reagents in sedimentary reactions are usually water-soluble ionic compounds. When these compounds are dissolved in water, they separate from each other to form anion and cation ions. If a cation of one compound forms an insoluble compound with an anion of another compound, precipitation occurs. Applications of this method include the removal of heavy metals and anions from wastewater, reducing water hardness, and metal recovery. Synthesis processes occur by chemical deposition based on deposition reactions (substitution), co-precipitation, oxidation–reduction, thermolysis, hydrolysis, polymerization, and condensation. The control of various variables in a synthetic system plays an important role in controlling particle size and morphology. The products of sedimentary processes under various synthetic conditions range from coarse crystals to nanostructured colloidal particles. Co-precipitation chemical methods allow the synthesis of metal nanoparticles, metal oxides, as well as many metal semiconductor compounds. Also, a wide range of properties and characteristics can be achieved by changing the synthesis conditions. The basis of these methods is the preparation of products from soluble precursors using different systems such as electrochemical equipment, microwave radiation, ultrasound, and high-energy beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. de Leon, A., Advincula, R.C. (2015). Chapter 11 - Conducting polymers with superhydrophobic effects as anticorrosion coating, Editor(s): Atul Tiwari, James Rawlins, Lloyd H. Hihara, Intelligent coatings for corrosion control, Butterworth-Heinemann, Pages 409–430, ISBN 9780124114678. https://doi.org/10.1016/B978-0-12-411467-8.00011-8

  2. Meskin, P. E., Ivanov, V. K., Baranchikov, A. E., Churagulov, B. R., & Tretyakov, Yu. D. (2006). Ultrasonics Sonochemistry, 13, 47–53.

    Article  Google Scholar 

  3. Fazal, S., Jayasree, A., Sasidharan, S., Koyakutty, M., Nair, S. V., & Menon, D. (2014). Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Applied Materials & Interfaces, 6(11), 8080–8089.

    Article  Google Scholar 

  4. Rempel, S. V., Kuznetsova, Y. V., & Rempel, A. A. (2018). Reduction of colloidal Ag 2 S to binary Ag 2–X S/Ag nanoparticles under UV and visible irradiation. Mendeleev Communications, 28(1), 96–98.

    Article  Google Scholar 

  5. Seabra, A., & Durán, N. (2015). Nanotoxicology of metal oxide nanoparticles. Metals, 5(2), 934–975.

    Article  Google Scholar 

  6. Mondal, K. (2017). Recent advances in the synthesis of metal oxide nanofibers and their environmental remediation applications. Inventions, 2(2), 9.

    Article  Google Scholar 

  7. Jiang, P., Zhu, D.-L., Zhu, C.-N., Zhang, Z.-L., Zhang, G.-J., & Pang, D.-W. (2015). A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots. Nanoscale, 7(45), 19310–19316.

    Article  Google Scholar 

  8. Seyyedi, M., & Molajou, A. (2021). Nanohydroxyapatite loaded-acrylated polyurethane nanofibrous scaffolds for controlled release of paclitaxel anticancer drug. Journal of Research in Science, Engineering and Technology, 9(01), 50–61.

    Google Scholar 

  9. Qaderi, J. (2020). A brief review on the reaction mechanisms of CO2 hydrogenation into methanol. International Journal of Innovative Research and Scientific Studies, 3(2), 33–40. https://doi.org/10.53894/ijirss.v3i2.31

  10. Shetty, S. S., Sharma, M., Kabekkodu, S. P., Anil Kumar, N. V., Satyamoorthy, K., & Radhakrishnan, R. (2021). Understanding the molecular mechanism associated with reversal of oral submucous fibrosis targeting hydroxylysine aldehyde-derived collagen cross-links. Journal of Carcinogenesis, 20, 9.

    Article  Google Scholar 

  11. Das, S., Maity, S., & Goswami, T. K. (2021). Effectiveness and safety of topical combination of tropicamide 0.8% (w/v) and phenylephrine hydrochloride 5% (w/v) among the successful postdacryocystorhinostomy cases. Journal of Natural Science, Biology and Medicine, 12(1), 43–46. https://doi.org/10.4103/jnsbm.JNSBM_94_20

    Article  Google Scholar 

  12. SezariHamankoh, R., & Shamaei, S. (2021). Evaluation of anticancer and anti-bacterial effects of silver nanoparticles synthesized by Origanum majorana L. Extract on Cancer Cells MCF-7, HeLa and A549. Journal of Chemical Health Risks, 11(4), 457–467. https://doi.org/10.22034/jchr.2021.1937062.1373

    Article  Google Scholar 

  13. Battocchio, C., Porcaro, F., Mukherjee, S., Magnano, E., Nappini, S., Fratoddi, I., Quintiliani, M., Russo, M. V., & Polzonetti, G. (2014). Gold nanoparticles stabilized with aromatic thiols: Interaction at the molecule–metal interface and ligand arrangement in the molecular shell investigated by SR-XPS and NEXAFS. The Journal of Physical Chemistry C, 118(15), 8159–8168.

    Article  Google Scholar 

  14. Maity, D., & Agrawal, D. C. (2007). Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. Journal of Magnetism and Magnetic Materials, 308(1), 46–55.

    Article  Google Scholar 

  15. Zhang, Z., Meihua, Lu., Hairuo, Xu., & Chin, W.-S. (2007). Shape-controlled synthesis of zinc oxide: A simple method for the preparation of metal oxide nanocrystals in non-aqueous Medium. Chemistry—a European Journal, 13(2), 632–638.

    Article  Google Scholar 

  16. Wetterskog, E., Agthe, M., Mayence, A., Grins, J., Wang, D., Rana, S., Ahniyaz, A., Salazar-Alvarez, G., & Bergström, L. (2014). Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Science and Technology of Advanced Materials, 15(5), 055010.

    Article  Google Scholar 

  17. Arabi, M., Naseri, H. (2021). The influence of zinc oxide nanoparticles on blood markers in domestic pigeons (Columba livia). Journal of Chemical Health Risks, 11(Special Issue: Bioactive Compounds: Their role in the prevention and treatment of diseases), 221–232. https://doi.org/10.22034/jchr.2021.1937480.1379

  18. Nemati Shizari, L., Mohamadpour Dounighi, N., Bayat, M., & Mosavari, N. (2021). A new amphotericin B-loaded trimethyl chitosan nanoparticles as a drug delivery system and antifungal activity on Candida albicans biofilm. Archives of Razi Institute, 76(3), 575–590. https://doi.org/10.22092/ari.2020.342702.1477

    Article  Google Scholar 

  19. Shalaby, M. N. (2018). The effect of whey protein (natural nanoparticle) on muscle strength, GH, IGF, T. Protein and body composition. International Journal of Pharmaceutical Research & Allied Sciences, 7(1).

  20. Shalaby, M. N., Sakoury, M. M., Kholif, M. A., & Albadaly, N. I. A. (2020). The role of amino acids in improving immunity and growth factors of volleyball players. Journal of Advanced Pharmacy Education and Research, 10(4), 140–144.

    Google Scholar 

  21. Bokov, D., Jalil, A.T., Chupradit, S., Suksatan, W., Ansari, M.J., Shewael, I.H., Valiev, G.H., Kianfar, E. (2021). Nanomaterial by sol-gel method: Synthesis and application. Advances in Materials Science and Engineering, 2021, Article ID 5102014, 21 pages. https://doi.org/10.1155/2021/5102014

  22. Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Biotechnology Advances, 31(2), 346–356.

    Article  Google Scholar 

  23. Ebelmen, J. J. (1844). Comptes rendus de l’Académie des Sciences. 19, 398

  24. Tai, L. W., & Lessing, P. A. (1992). Journal of Materials Research, 7, 511–519.

    Article  Google Scholar 

  25. Pileni, M. P. (2001). Journal of Physical Chemistry C, 17, 7476–7487.

    Google Scholar 

  26. (1988). Chemical encyclopedia, vol. 1, Moscow: Sovetskaja enciklopedija, p. 567

  27. Komarneni, S., Li, Q., Stefansson, K. M., & Roy, R. (1993). Journal of Materials Research, 8(12), 3176–3183.

    Article  Google Scholar 

  28. (2009). Hydrothermal synthesis, Wikipedia, the free Encyclopedia. http://en.wikipedia.org/wiki/Hydrothermal_synthesis. Accessed 28 Nov 2021

  29. Chen, C., Wang, X., Wang, Y., Yang, D., Yao, F., Zhang, W., Wang, B., Sewvandi, G. A., Yang, D., & Hu, D. (2020). Additive manufacturing of piezoelectric materials. Advanced Functional Materials, 30, 2005141. https://doi.org/10.1002/adfm.202005141

    Article  Google Scholar 

  30. Wang, Z., Huang, Z., Brosnahan, J. T., Zhang, S., Guo, Y., Guo, Y., Wang, Li., Wang, Y., & Zhan, W. (2019). Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion. Environmental Science & Technology., 53(9), 5349–5358. https://doi.org/10.1021/acs.est.9b01929

    Article  Google Scholar 

  31. Yang, X., Li, Q., Lu, E., et al. (2019). Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nature Communications, 10, 1611. https://doi.org/10.1038/s41467-019-09662-4

    Article  Google Scholar 

  32. Yang, S., Li, Z., Yan, K., Zhang, X., Xu, Z., Liu, W., Liu, Z., & Liu, H. (2021). Removing and recycling mercury from scrubbing solution produced in wet nonferrous metal smelting flue gas purification process. Journal of Environmental Sciences, 103, 59–68.

    Article  Google Scholar 

  33. Zheng, Z., Zhang, X., Carbo, D., Clark, C., Nathan, C.-A., & Lvov, Y. (2010). Sonication-assisted synthesis of polyelectrolyte-coated curcumin nanoparticles. Langmuir, 26(11), 7679–7681.

    Article  Google Scholar 

  34. Cui, H., Feng, Y., Ren, W., Zeng, T., Lv, H., & Pan, Y. (2009). Strategies of large scale synthesis of monodisperse nanoparticles. Recent Patents on Nanotechnology, 3, 32–41.

    Article  Google Scholar 

  35. Hyeon, T. (2004). Synthesis of mono-disperse and highly crystalline nano-particles of metals, alloys, metal-oxides, and multi-metallic oxides without a size-selection process. US20040247503.

  36. Kato, Y., Sugimoto, S., Shinohara, K., Tezuka, N., Kagotani, T., & Inomata, K. (2002). Magnetic properties and microwave absorption properties of polymer-protected cobalt nanoparticles. Materials Transactions JIM, 43, 406–409.

    Article  Google Scholar 

  37. Cushing, B. L., Kolesnichenko, V. L., & O’Connor, C. J. (2004). Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews, 104, 3893–3946.

    Article  Google Scholar 

  38. Lu, A., Salabas, E. L., & Schuth, F. (2007). Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewanted Chemistry International Edition, 46, 1222–1244.

    Article  Google Scholar 

  39. Hyeon, T., Lee, S., Park, J., Chung, Y., & Na, H. (2001). Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process”. Journal of American Chemical Society, 123, 12798–12801.

    Article  Google Scholar 

  40. Murray, C. B., Norris, D. J., & Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. Journal of American Chemical Society, 115, 8706–8715.

    Article  Google Scholar 

  41. Zhang, T., Li, J., Liu, J., & Yang, J. (2018). React-on-demand (RoD) fabrication of highly conductive metal–polymer hybrid structure for flexible electronics via one-step direct writing or printing. Advanced Functional Materials, 28, 1704671. https://doi.org/10.1002/adfm.201704671

    Article  Google Scholar 

  42. Tavakoli, M., Malakooti, M. H., Paisana, H., Ohm, Y., Green Marques, D., Alhais Lopes, P., Piedade, A. P., Almeida, A. T., & Majidi, C. (2018). EGaIn-assisted room-temperature sintering of silver nanoparticles for stretchable, inkjet-printed, thin-film electronics. Advanced Materials, 30, 1801852. https://doi.org/10.1002/adma.201801852

    Article  Google Scholar 

  43. Sakai, M., Okamoto, T., Yamazaki, Y., Hayashi, J., Yamaguchi, S., Kuniyoshi, S., Yamauchi, H., Sadamitsu, Y., Hamada, M., & Kudo, K. (2013). Organic thin-film transistor fabricated between flexible films by thermal lamination. Physica Status Solidi (RRL) - Rapid Research Letters, 7, 1093–1096. https://doi.org/10.1002/pssr.201308118

    Article  Google Scholar 

  44. Liu, R., Tan, M., Zhang, X., Xu, L., Chen, J., Chen, Y., Tang, X., & Wan, L. (2018). Solution-processed composite electrodes composed of silver nanowires and aluminum-doped zinc oxide nanoparticles for thin-film solar cells applications. Solar Energy Materials and Solar Cells, 174, 584–592. https://doi.org/10.1016/j.solmat.2017.09.042

    Article  Google Scholar 

  45. Ahn, B. Y., Duoss, E. B., Motala, M. J., Guo, X., Park, S.-I., Xiong, Y., Yoon, J., Nuzzo, R. G., Rogers, J. A., & Lewis, J. A. (2009). Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science, 323, 1590–1593. https://doi.org/10.1126/science.1168375

    Article  Google Scholar 

  46. Stewart, I. E., Kim, M. J., & Wiley, B. J. (2017). Effect of morphology on the electrical resistivity of silver nanostructure films. ACS Applied Materials & Interfaces, 9, 1870–1876. https://doi.org/10.1021/acsami.6b12289

    Article  Google Scholar 

  47. Finn, D. J., Lotya, M., & Coleman, J. N. (2015). Inkjet printing of silver nanowire networks. ACS Applied Materials & Interfaces, 7, 9254–9261. https://doi.org/10.1021/acsami.5b01875

    Article  Google Scholar 

  48. Yang, C., Gu, H., Lin, W., Yuen, M. M., Wong, C. P., Xiong, M., & Gao, B. (2011). Silver nanowires: From scalable synthesis to recyclable foldable electronics. Advanced Materials, 23, 3052–3056. https://doi.org/10.1002/adma.201100530

    Article  Google Scholar 

  49. Liu, Z., Ji, H., Wang, S., Zhao, W., Huang, Y., Feng, H., Wei, J., & Li, M. (2018). Enhanced electrical and mechanical properties of a printed bimodal silver nanoparticle ink for flexible electronics. Physica Status Solidi A, 215, 1800007. https://doi.org/10.1002/pssa.201800007

    Article  Google Scholar 

  50. Kim, T., Canlier, A., Kim, G. H., Choi, J., Park, M., & Han, S. M. (2013). Electrostatic spray deposition of highly transparent silver nanowire electrode on flexible substrate. ACS Applied Materials & Interfaces, 5, 788–794. https://doi.org/10.1021/am3023543

    Article  Google Scholar 

  51. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y. I., Kim, Y.-J., Kim, K. S., Özyilmaz, B., Ahn, J.-H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578. https://doi.org/10.1038/nnano.2010.132

    Article  Google Scholar 

  52. Kong, D., Le, L. T., Li, Y., Zunino, J. L., & Lee, W. (2012). Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir, 28, 13467–13472. https://doi.org/10.1021/la301775d

    Article  Google Scholar 

  53. Castillo-Orozco, E., Kumar, R., & Kar, A. (2019). Laser-induced subwavelength structures by microdroplet superlens. Optics Express, 27, 8130–8142. https://doi.org/10.1364/OE.27.008130

    Article  Google Scholar 

  54. Castillo-Orozco, E., Kumar, R., & Kar, A. (2019). Laser electrospray printing of nanoparticles on flexible and rigid substrates. Journal of Laser Applications, 31, 022015. https://doi.org/10.2351/1.5079733

    Article  Google Scholar 

  55. Prokhorov, A. M. (2018). Laser heating of metals. CRC Press.

    Book  Google Scholar 

  56. Springer, J., Poruba, A., Müllerova, L., Vanecek, M., Kluth, O., & Rech, B. (2004). Absorption loss at nanorough silver back reflector of thin-film silicon solar cells. Journal of Applied Physics, 95, 1427–1429. https://doi.org/10.1063/1.1633652

    Article  Google Scholar 

  57. Parker, W., Jenkins, R., Butler, C., & Abbott, G. (1961). Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. Journal of Applied Physics, 32, 1679–1684. https://doi.org/10.1063/1.1728417

    Article  Google Scholar 

  58. Fischer, P., Romano, V., Weber, H. P., & Kolossov, S. (2004). Pulsed laser sintering of metallic powders. Thin Solid Films, 453–454, 139–144. https://doi.org/10.1016/j.tsf.2003.11.152

    Article  Google Scholar 

  59. Park, T., & Kim, D. (2015). Excimer laser sintering of indium tin oxide nanoparticles for fabricating thin films of variable thickness on flexible substrates. Thin Solid Films, 578, 76–82. https://doi.org/10.1016/j.tsf.2015.02.015

    Article  Google Scholar 

  60. Kim, K.-S., Myung, W.-R., & Jung, S.-B. (2012). Effects of sintering conditions on microstructure and characteristics of screen-printed Ag thin film. Electronic Materials Letters, 8, 309–314. https://doi.org/10.1007/s13391-012-1102-6

    Article  Google Scholar 

  61. Gulzar, M., Masjuki, H. H., Kalam, M. A., Varman, M., Zulkifli, N. W. M., Mufti, R. A., & Zahid, R. (2016). Tribological performance of nanoparticles as lubricating oil additives. Journal of Nanoparticle Research, 18(8), 223. https://doi.org/10.1007/s11051-016-3537-4

    Article  Google Scholar 

  62. Xie, H., Jiang, B., He, J., Xia, X., & Pan, F. (2016). Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribology International, 93(Part A), 63. https://doi.org/10.1016/j.triboint.2015.08.009

    Article  Google Scholar 

  63. Li, Y., Liu, T., Zhang, Y., Zhang, P., & Zhang, S. (2018). Study on the tribological behaviors of copper nanoparticles in three kinds of commercially available lubricants. Industrial Lubrication and Tribology, 70(3), 519. https://doi.org/10.1108/ILT-05-2017-0143

    Article  Google Scholar 

  64. Singh, N., Singh, Y., Sharma, A., & Singla, A. (2019). Effect of addition of copper nanoparticles on the tribological behavior of macadamia oil at different sliding speeds. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(23), 2917. https://doi.org/10.1080/15567036.2019.1582734

    Article  Google Scholar 

  65. Kumar, A., Thakre, G. D., Arya, P. K., & Jain, A. K. (2017). Influence of operating parameters on the tribological performance of oleic acid-functionalized Cu nanofluids. Industrial & Engineering Chemistry Research, 56(13), 3527. https://doi.org/10.1021/acs.iecr.6b04375

    Article  Google Scholar 

  66. Sadrolhosseini, A. R., Abdul Rashid, S., Zakaria, A., & Shameli, K. (2016). Green fabrication of copper nanoparticles dispersed in walnut oil using laser ablation technique. Journal of Nanomaterials, 2016, 1–7. https://doi.org/10.1155/2016/8069685

    Article  Google Scholar 

  67. Hatami, M., Hasanpour, M., & Jing, D. (2020). Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part II: Nano-lubricants. Journal of Molecular Liquids, 319, 114156. https://doi.org/10.1016/j.molliq.2020.114156

    Article  Google Scholar 

  68. Aberoumand, S., & Jafarimoghaddam, A. (2017). Experimental study on synthesis, stability, thermal conductivity and viscosity of Cu–engine oil nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 71, 315. https://doi.org/10.1016/j.jtice.2016.12.035

    Article  Google Scholar 

  69. Khadempir, F., Askari, H. R., & Nejad, A. A. (2019). Investigation of nonlinear absorption and the electromagnetically induced transparency in a SMNP-SQD hybrid system by using the Mie theory. Optik, 178, 51. https://doi.org/10.1016/j.ijleo.2018.09.155

    Article  Google Scholar 

  70. Santos, J., Santos, M., Thesing, A., Tavares, F., Griep, J., & Rodrigues, M. (2016). Ressonância de Plasmon de Superfície Localizado e Aplicação em Biossensores e Células Solares. Química Nova, 39(9), 1098. https://doi.org/10.21577/0100-4042.20160126

    Article  Google Scholar 

  71. Liz-Marzan, L. M. (2004). Nanometals. Materials Today, 7(2), 26. https://doi.org/10.1016/S1369-7021(04)00080-X

    Article  Google Scholar 

  72. Franke, D., Petoukhov, M. V., Konarev, P. V., Panjkovich, A., Tuukkanen, A., Mertens, H. D. T., Kikhney, A. G., Hajizadeh, N. R., Franklin, J. M., Jeffries, C. M., & Svergun, D. I. (2017). ATSAS 2.8: A comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of Applied Crystallography, 50(4), 1212. https://doi.org/10.1107/S1600576717007786

    Article  Google Scholar 

  73. Kumar, G., Garg, H. C., & Gijawara, A. (2019). Experimental investigation of tribological effect on vegetable oil with CuO nanoparticles and ZDDP additives. Industrial Lubrication and Tribology, 71(3), 499. https://doi.org/10.1108/ILT-05-2018-0196

    Article  Google Scholar 

  74. Alves, S. M., Silva e Mello, V., & Sinatora, A. (2018). Nanolubrication Mechanisms: Influence of size and concentration of CuO nanoparticles. Materials Performance and Characterization, 7(3), 20170064. https://doi.org/10.1520/MPC20170064

    Article  Google Scholar 

  75. Guo, Z., Zhang, Y., Wang, J., Gao, C., Zhang, S., Zhang, P., & Zhang, Z. (2020). Interactions of Cu nanoparticles with conventional lubricant additives on tribological performance and some physicochemical properties of an ester base oil. Tribology International, 141, 105941. https://doi.org/10.1016/j.triboint.2019.105941

    Article  Google Scholar 

  76. Hu, C., Bai, M., Lv, J., Liu, H., & Li, X. (2014). Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces. Applied Surface Science, 321, 302. https://doi.org/10.1016/j.apsusc.2014.10.006

    Article  Google Scholar 

  77. Kianfar, E. (2019). Recent advances in synthesis, properties, and applications of vanadium oxide nanotube. Microchemical Journal., 145, 966–978.

    Article  Google Scholar 

  78. Gao, T., Zhang, X., Li, C., Zhang, Y., Yang, M., Jia, D., Ji, H., Zhao, Y., Li, R., Yao, P., & Zhu, L. (2020). Surface morphology evaluation of multi-angle 2D ultrasonic vibration integrated with nanofluid minimum quantity lubrication grinding. Journal of Manufacturing Processes, 51, 44–61.

    Article  Google Scholar 

  79. Duan, Z., Yin, Q., Li, C., et al. (2020). Milling force and surface morphology of 45 steel under different Al2O3 nanofluid concentrations. International Journal of Advanced Manufacturing Technology, 107, 1277–1296. https://doi.org/10.1007/s00170-020-04969-9

    Article  Google Scholar 

  80. Gao, T., Li, C., Zhang, Y., Yang, M., Jia, D., Jin, T., Hou, Y., & Li, R. (2019). Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribology International, 131, 51–63.

    Article  Google Scholar 

  81. Zhang, Y., Li, C., Jia, D., Zhang, D., & Zhang, X. (2015). Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding. International Journal of Machine Tools and Manufacture, 99, 19–33.

    Article  Google Scholar 

  82. Zhang, Y., Li, C., Jia, D., Zhang, D., & Zhang, X. (2015). Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. Journal of Cleaner Production, 87, 930–940.

    Article  Google Scholar 

  83. Yang, Y., Chen, H., Zou, X., Shi, X.-L., Liu, W.-D., Feng, L., Suo, G., Hou, X., Ye, X., Zhang, L., Sun, C., Li, H., Wang, C., & Chen, Z.-G. (2020). Flexible carbon-fiber/semimetal Bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts. ACS Applied Materials & Interfaces., 12(22), 24845–24854. https://doi.org/10.1021/acsami.0c05695

    Article  Google Scholar 

  84. Qinghua, Hu., Zhang, W., Yin, Q., Wang, Y., & Wang, H. (2021). A conjugated fluorescent polymer sensor with amidoxime and polyfluorene entities for effective detection of uranyl ion in real samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 244, 118864.

    Article  Google Scholar 

  85. Salimi, M., Pirouzfar, V., & Kianfar, E. (2017). Enhanced gas transport properties in silica nanoparticle filler-polystyrene nanocomposite membranes. Colloid and Polymer Science, 295, 215–226. https://doi.org/10.1007/s00396-016-3998-0

    Article  Google Scholar 

  86. Kianfar, E. (2018). Synthesis and characterization of AlPO4/ZSM-5 catalyst for methanol conversion to dimethyl ether. Russian Journal of Applied Chemistry, 91, 1711–1720. https://doi.org/10.1134/S1070427218100208

    Article  Google Scholar 

  87. Kianfar, E. (2019). Ethylene to propylene conversion over Ni-W/ZSM-5 Catalyst. Russian Journal of Applied Chemistry, 92, 1094–1101. https://doi.org/10.1134/S1070427219080068

    Article  Google Scholar 

  88. Kianfar, E., Salimi, M., Kianfar, F., Kianfar, M., & Razavikia, S. A. H. (2019). CO2/N2 separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromolecular Research, 27, 83–89. https://doi.org/10.1007/s13233-019-7009-4

    Article  Google Scholar 

  89. Kianfar, E. (2019). Ethylene to propylene over zeolite ZSM-5: Improved catalyst performance by treatment with CuO. Russian Journal of Applied Chemistry, 92, 933–939. https://doi.org/10.1134/S1070427219070085

    Article  Google Scholar 

  90. Kianfar, E., Shirshahi, M., Kianfar, F., & Kianfar, F. (2018). Simultaneous prediction of the density, viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids using artificial neural network. SILICON, 10, 2617–2625. https://doi.org/10.1007/s12633-018-9798-z

    Article  Google Scholar 

  91. Salimi, M., Pirouzfar, V., & Kianfar, E. (2017). Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation. Polymer Science, Series A, 59, 566–574. https://doi.org/10.1134/S0965545X17040071

    Article  Google Scholar 

  92. Kianfar, F., & Kianfar, E. (2019). Synthesis of isophthalic acid/aluminum nitrate thin film nanocomposite membrane for hard water softening. Journal of Inorganic and Organometallic Polymers, 29, 2176–2185. https://doi.org/10.1007/s10904-019-01177-1

    Article  Google Scholar 

  93. Kianfar, E., Azimikia, R., & Faghih, S. M. (2020). Simple and strong dative attachment of α-diimine nickel (II) catalysts on supports for ethylene polymerization with controlled morphology. Catalysis Letters, 150, 2322–2330. https://doi.org/10.1007/s10562-020-03116-z

    Article  Google Scholar 

  94. Kianfar, E. (2019). Nanozeolites: Synthesized, properties, applications. Journal of Sol-Gel Science and Technology, 91, 415–429. https://doi.org/10.1007/s10971-019-05012-4

    Article  Google Scholar 

  95. Liu, H., & Kianfar, E. (2021). Investigation the synthesis of nano-SAPO-34 catalyst prepared by different templates for MTO process. Catalysis Letters, 151, 787–802. https://doi.org/10.1007/s10562-020-03333-6

    Article  Google Scholar 

  96. Kianfar, E., Salimi, M., Hajimirzaee, S., Koohestani, B. (2018). Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized using sonochemistry method. International Journal of Chemical Reactor Engineering, 17(2), 20180127. https://doi.org/10.1515/ijcre-2018-0127

  97. Kianfar, E., Salimi, M., Pirouzfar, V., & Koohestani, B. (2018). Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. International Journal of Applied Ceramic Technology, 15, 734–741. https://doi.org/10.1111/ijac.12830

    Article  Google Scholar 

  98. Kianfar, E., Salimi, M., Pirouzfar, V., & Koohestani, B. (2018). Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for methanol to gasoline conversion. International Journal of Chemical Reactor Engineering, 16(7), 20170229. https://doi.org/10.1515/ijcre-2017-0229

    Article  Google Scholar 

  99. Kianfar, E. (2019). Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: A review. Reviews in Inorganic Chemistry., 39, 157–177.

    Article  Google Scholar 

  100. Kianfar, E., Salimi, M. (2020). A review on the production of light olefins from hydrocarbons cracking and methanol conversion: In book: Advances in chemistry research, Volume 59: Edition: James C. Taylor Chapter: 1: Publisher: Nova Science Publishers, Inc.

  101. Kianfar, E., Razavi, A. (2020). Zeolite catalyst based selective for the process MTG: A review: In book: Zeolites: Advances in research and applications, Edition: Annett Mahler Chapter: 8: Publisher: Nova Science Publishers, Inc.

  102. Kianfar, E. (2020). Zeolites: Properties, applications, modification and selectivity: In book: Zeolites: Advances in research and applications, Edition: Annett Mahler Chapter: 1: Publisher: Nova Science Publishers, Inc.

  103. Kianfar, E., Hajimirzaee, S., Musavian, S. S., & Mehr, A. S. (2020). Zeolite-based catalysts for methanol to gasoline process: A review. Microchemical Journal., 156, 104822.

    Article  Google Scholar 

  104. Kianfar, E., Baghernejad, M., & Rahimdashti, Y. (2015). Study synthesis of vanadium oxide nanotubes with two template hexadecylamin and hexylamine. Biological Forum., 7, 1671–1685.

    Google Scholar 

  105. Kianfar, E. (2020). Synthesizing of vanadium oxide nanotubes using hydrothermal and ultrasonic method. Publisher: Lambert Academic Publishing. 1–80. ISBN: 978–613–9–81541–8

  106. Kianfar, E., Pirouzfar, V., & Sakhaeinia, H. (2017). An experimental study on absorption/stripping CO2 using mono-ethanol amine hollow fiber membrane contactor. Journal of the Taiwan Institute of Chemical Engineers, 80, 954–962.

    Article  Google Scholar 

  107. Kianfar, E., & Viet, C. (2021). Polymeric membranes on base of polymethyl methacrylate for air separation: A review. Journal of Materials Research and Technology., 10, 1437–1461.

    Article  Google Scholar 

  108. Mousavian, S., Faravar, P., Zarei, Z., Azimikia, R., Monjezi, M. G., & Kianfar. (2020). Modeling and simulation absorption of CO2 using hollow fiber membranes (HFM) with mono-ethanol amine with computational fluid dynamics. J. Environ. Chem. Eng., 8(4), 103946.

    Article  Google Scholar 

  109. Yang, Z., Zhang, L., Zhou, Y., Wang, H., Wen, L., & Kianfar, E. (2020). Investigation of effective parameters on SAPO-34 nano catalyst the methanol-to-olefin conversion process: A review. Reviews in Inorganic Chemistry, 40(3), 91–105. https://doi.org/10.1515/revic-2020-0003

    Article  Google Scholar 

  110. Gao, C., Liao, J., Jingqiong, Lu., Ma, J., & Kianfar, E. (2020). The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: A review. Reviews in Inorganic Chemistry. https://doi.org/10.1515/revic-2020-0007

    Article  Google Scholar 

  111. Kianfar, E., Salimi, M., Koohestani, B. (2020). Zeolite CATALYST: A review on the production of light olefins. Publisher: Lambert Academic Publishing. 1–116. ISBN:978–620–3–04259–7

  112. Kianfar, E. (2020). Investigation on catalysts of “methanol to light olefins”. Publisher: Lambert Academic Publishing. 1–168. ISBN: 978–620–3–19402–9

  113. Kianfar, E. (2020). Application of nanotechnology in enhanced recovery oil and gas importance & applications of nanotechnology, MedDocs Publishers.Vol. 5, Chapter 3, pp. 16–21

  114. Kianfar, E. (2020). Catalytic properties of nanomaterials and factors affecting its importance & applications of nanotechnology. MedDocs Publishers.Vol. 5, Chapter 4, pp. 22–25

  115. Kianfar, E. (2020). Introducing the application of nanotechnology in lithium-ion battery importance & applications of nanotechnology. MedDocs Publishers. Vol. 4, Chapter 4, pp. 1–7

  116. Kianfar, E., & Mazaheri, H. (2020). Synthesis of nanocomposite (CAU-10-H) thin-film nanocomposite (TFN) membrane for removal of color from the water. Fine Chemical Engineering., 1, 83–91.

    Article  Google Scholar 

  117. Kianfar, E. (2020). Simultaneous prediction of the density and viscosity of the ternary system water-ethanol-ethylene glycol using support vector machine. Fine Chemical Engineering., 1, 69–74.

    Article  Google Scholar 

  118. Kianfar, E., Salimi, M., & Koohestani, B. (2020). Methanol to gasoline conversion over CuO/ZSM-5 catalyst synthesized and influence of water on conversion. Fine Chemical Engineering., 1, 75–82.

    Article  Google Scholar 

  119. Kianfar, E. (2020). An experimental study PVDF and PSF hollow fiber membranes for chemical absorption carbon dioxide. Fine Chemical Engineering., 1, 92–103.

    Article  Google Scholar 

  120. Kianfar, E., & Mafi, S. (2020). Ionic liquids: Properties, application, and synthesis. Fine Chemical Engineering., 2, 22–31.

    Article  Google Scholar 

  121. Faghih, S. M., & Kianfar, E. (2018). Modeling of fluid bed reactor of ethylene dichloride production in Abadan Petrochemical based on three-phase hydrodynamic model. International Journal of Chemical Reactor Engineering, 16, 1–14.

    Article  Google Scholar 

  122. Kianfar, E., Mazaheri, H. (2020).Methanol to gasoline: A sustainable transport fuel. In book: Advances in chemistry research. Volume 66, Edition: James C. Taylor. Chapter: 4. Publisher: Nova Science Publishers, Inc.

  123. Majdi, H. S., Latipov, Z. A., Borisov, V., et al. (2021). Nano and battery anode: A review. Nanoscale Research Letters, 16, 177. https://doi.org/10.1186/s11671-021-03631-x

    Article  Google Scholar 

  124. Kianfar. (2020). A comparison and assessment on performance of zeolite catalyst based selective for the process methanol to gasoline: A review. “In Advances in Chemistry Research, Vol. 63, Chapter 2. Nova Science Publishers, Inc.

  125. Kianfar, E., Hajimirzaee, S., Faghih, S.M., et al. (2020). Polyvinyl chloride + nanoparticles titanium oxide membrane for separation of O2/N2. Advances in Nanotechnology. Nova Science Publishers, Inc.

  126. Kianfar, E. (2020). Synthesis of characterization nanoparticles isophthalic acid/aluminum nitrate (CAU-10-H) using method hydrothermal. Advances in Chemistry Research. Nova Science Publishers, Inc.

  127. Kianfar, E. (2020). CO2 Capture with ionic liquids: A review. Advances in Chemistry Research. Volume 67 Publisher: Nova Science Publishers, Inc.

  128. Kianfar, E. (2020). Enhanced light olefins production via methanol dehydration over promoted SAPO-34. Advances in Chemistry Research. Volume 63, Chapter: 4, Nova Science Publishers, Inc.

  129. Kianfar, E. (2020). Gas hydrate: applications, structure, formation, separation processes, thermodynamics. Advances in chemistry research. Volume 62, Edition: James C. Taylor. Chapter: 8. Publisher: Nova Science Publishers, Inc.

  130. Kianfar, M., Kianfar, F., & Kianfar, E. (2016). The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 Blends. American Journal of Oil and Chemical Technologies, 4(1), 29–44.

    Google Scholar 

  131. Syah, R., Zahar, M., Kianfa, E. (2021). Nanoreactors: Properties, applications and characterization. International Journal of Chemical Reactor Engineering, 000010151520210069. https://doi.org/10.1515/ijcre-2021-0069

  132. Kianfar, E. (2016). The effect of nano-composites on the mechanic and morphological characteristics of NBR/PA6 blends. American Journal of Oil and Chemical Technologies, 4(1), 27–42.

    Google Scholar 

  133. Kianfar, F., Moghadam, S. R. M., & Kianfar, E. (2015). Energy optimization of Ilam gas refinery unit 100 by using HYSYS Refinery Software. Indian Journal of Science and Technology, 8(S9), 431–436.

    Google Scholar 

  134. Kianfar, E. (2015). Production and identification of vanadium oxide nanotubes. Indian Journal of Science and Technology, 8(S9), 455–464.

    Article  Google Scholar 

  135. Kianfar, F., Moghadam, S. R. M., & Kianfar, E. (2015). Synthesis of spiro pyran by using silica-bonded N-propyldiethylenetriamine as recyclable basic catalyst. Indian Journal of Science and Technology, 8(11), 68669.

    Article  Google Scholar 

  136. Hajimirzaee, S., Mehr, A. S., & Kianfar, E. (2020). Modified ZSM-5 zeolite for conversion of LPG to aromatics. Polycyclic Aromatic Compounds. https://doi.org/10.1080/10406638.2020.1833048

    Article  Google Scholar 

  137. Kianfar, E. (2021). Investigation of the effect of crystallization temperature and time in synthesis of SAPO-34 catalyst for the production of light olefins. Petroleum Chemistry, 61, 527–537. https://doi.org/10.1134/S0965544121050030

    Article  Google Scholar 

  138. Huang, X., Zhu, Y., & Kianfar, E. (2021). Nano biosensors: Properties, applications and Electrochemical Techniques. Journal of Materials Research and Technology., 12, 1649–1672. https://doi.org/10.1016/j.jmrt.2021.03.048

    Article  Google Scholar 

  139. Kianfar, E. (2021). Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles. Journal of Nanbiotechnology, 19, 159. https://doi.org/10.1186/s12951-021-00896-3

    Article  Google Scholar 

  140. Kianfar, E. (2020). Magnetic nanoparticles in targeted drug delivery: A review. Journal of Superconductivity and Novel Magnetism. https://doi.org/10.1007/s10948-021-05932-9

    Article  Google Scholar 

  141. Ansari, M. J., Kadhim, M. M., Hussein, B. A., et al. (2022). Synthesis and stability of magnetic nanoparticles. BioNanoSci. https://doi.org/10.1007/s12668-022-00947-5

    Article  Google Scholar 

  142. Supat Chupradit, M. Kavitha, Wanich Suksatan, Mohammad Javed Ansari, Zuhair I. Al Mashhadani, Mustafa M. Kadhim, Yasser Fakri Mustafa, Shafik S. Shafik, Ehsan Kianfar (2022). Morphological control: Properties and applications of metal nanostructures. Advances in Materials Science and Engineering, 2022, Article ID 1971891, 15 pages. https://doi.org/10.1155/2022/1971891

  143. Omer Dhia Aldeen Salah Aldeen, Mustafa Z. Mahmoud, Hasan Sh. Majdi, Dhameer A. Mutlak, Khusniddin Fakhriddinovich Uktamov, Ehsan Kianfar (2022). Investigation of effective parameters Ce and Zr in the synthesis of H-ZSM-5 and SAPO-34 on the production of light olefins from naphtha. Advances in Materials Science and Engineering, 2022, Article ID 6165180, 22 pages. https://doi.org/10.1155/2022/6165180

  144. Asep Suryatna, Indah Raya, Lakshmi Thangavelu, Firas Rahi Alhachami, Mustafa M. Kadhim, Usama S. Altimari, Zaid H. Mahmoud, Yasser Fakri Mustafa, Ehsan Kianfar (2022). A review of high-energy density lithium-air battery technology: Investigating the effect of oxides and nanocatalysts. Journal of Chemistry, 2022, Article ID 2762647, 32 pages. https://doi.org/10.1155/2022/2762647

  145. Abdelbasset, W. K., Jasim, S. A., Bokov, D. O., et al. (2022). Comparison and evaluation of the performance of graphene-based biosensors. Carbon Letters. https://doi.org/10.1007/s42823-022-00338-6

    Article  Google Scholar 

  146. Jasim, S. A., Kadhim, M. M., Venu, K. N., et al. (2022). Molecular junctions: Introduction and physical foundations, nanoelectrical conductivity and electronic structure and charge transfer in organic molecular junctions. Brazilian Journal of Physics, 52, 31. https://doi.org/10.1007/s13538-021-01033-z

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University; Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran; and Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.

Funding

The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Author information

Authors and Affiliations

Authors

Contributions

Kadda Hachem, Mohammad Javed Ansari, Raed Obaid Saleh, Hamzah H. Kzar, and Moaed E. Al-Gazally: investigation, concept and design, experimental studies, and writing—original draft, reviewing, and editing. Usama S. Altimari, Shaymaa Abed Hussein, Halah T. Mohammed, Ali Thaeer Hammid, and Ehsan Kianfar: investigation, concept and design, data curation, conceptualization, and writing—original draft, reviewing, and editing. All authors read and approved the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Kadda Hachem or Ehsan Kianfar.

Ethics declarations

Research Involving Humans and Animals Statement

Data Availability and Ethical statement we considerate the submitted is original and unique work and it has not been submitted to another journal simultaneity. The work is single study and it’s not up into several parts and results are presented clearly, honestly, and without, falsification or inappropriate the data manipulation.

Conflict of Interest

The authors declare no conflict of interest.

Informed Consent

Additional informed consent was obtained from all individual participants for whom identifying information is included in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachem, K., Ansari, M.J., Saleh, R.O. et al. Methods of Chemical Synthesis in the Synthesis of Nanomaterial and Nanoparticles by the Chemical Deposition Method: A Review. BioNanoSci. 12, 1032–1057 (2022). https://doi.org/10.1007/s12668-022-00996-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00996-w

Keywords

Navigation