Skip to main content

Advertisement

Log in

Green Synthesis of Silver Nanoparticles Using Musa balbisiana and Their Cytotoxic Effect on HL-60 and SiHa Cancer Cells Through Clathrin-Mediated Endocytosis

  • Research Article
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

We report herein a one-step, biomimetic synthesis of silver nanoparticles (AgNPs) from Musa balbisiana leaf extract having a cytotoxic effect on SiHa and HL-60 cancer cell lines without affecting non-cancerous, healthy peripheral blood mononuclear cells (PBMCs). The EDX analysis of AgNP dispersion, with a peak of 3.2 keV, confirmed the presence of elemental silver with a weight percentage of 54.57%. As is revealed from both SEM and TEM, monodispersed AgNPs were spherical in morphology with a diameter ranging from 11.28 to 87.53 nm with an average size of 12 nm. The diffraction pattern revealed polycrystalline AgNPs with FCC crystal structure. We report increased cytotoxicity accompanied with characteristic morphological change in HL-60 and SiHa, significant reduction in proliferation, increased reactive oxygen species (ROS) generation, and decreased mitochondrial membrane potential (MMP) following AgNP treatment at various doses. No such detrimental cellular impact of AgNPs was observed on healthy PBMCs. Fluorescence microscopy tracked coumarin-loaded AgNP accumulation in lysosomes as well as the nucleus, suggesting that both lysosome and nucleus served as cellular targets of AgNPs. AgNPs were internalized through passive and active pathways and that energy-dependent, clathrin-mediated endocytosis was involved in the trafficking of AgNPs. Our in silico docking studies confirm the binding of AgNPs to adaptor protein 2 on the β2 subunit facilitating clathrin-mediated endocytosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Malekzad, H., Zangabad, P. S., Mirshekari, H., Karimi, M., & Hamblin, M. R. (2017). Noble metal nanoparticles in biosensors: Recent studies and applications. Nanotechnology Reviews, 6, 301–329. https://doi.org/10.1515/ntrev-2016-0014

    Article  Google Scholar 

  2. Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles. Chem phys and biological methods Res Pharm Sci, 9, 385–406.

    Google Scholar 

  3. Burdusel, A.C., Gherasim, O., Grumezescu, AM., Mogoanta, L., Ficai, A., & Andronescu, E. (2018). Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials (Basel), 8, 681. https://doi.org/10.3390/nano8090681

  4. Yang, N. J., & Hinner, M. J. (2015). Getting across the cell membrane An overview for small molecules peptides and proteins. Methods Molecular Biology, 1266, 29–53. https://doi.org/10.1007/978-1-4939-2272-7_3

    Article  Google Scholar 

  5. Salatin, S., & Yari Khosroushahi, A. (2017). Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. Journal of Cellular and Molecular Medicine, 21, 1668–1686. https://doi.org/10.1111/jcmm.13110

    Article  Google Scholar 

  6. Sahay, G., Alakhova, D. Y., & Kabanov, A. V. (2010). Endocytosis of nanomedicines J Control Release, 145, 182–195. https://doi.org/10.1016/j.jconrel.2010.01.036

    Article  Google Scholar 

  7. Foroozandeh, P., & Aziz, A. A. (2018). Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Research Letters, 1, 339. https://doi.org/10.1186/s11671-018-2728-6

    Article  Google Scholar 

  8. Kumari, S., Mg, S., & Mayor, S. (2010). Endocytosis unplugged: Multiple ways to enter the cell. Cell Research, 20, 256–275. https://doi.org/10.1038/cr.2010.19

    Article  Google Scholar 

  9. Kiss, A. L., & Botos, E. (2009). Endocytosis via caveolae: Alternative pathway with distinct cellular compartments to avoid lysosomal degradation? Journal of Cellular and Molecular Medicine, 13, 1228–1237. https://doi.org/10.1111/j.1582-4934.2009.00754.x

    Article  Google Scholar 

  10. Popova, N. V., Deyev, I. E., & Petrenko, A. G. (2013). Clathrin-mediated endocytosis and adaptor proteins Acta Naturae, 5, 62–73.

    Google Scholar 

  11. Ahmed, S. (2016). Saifullah, Ahmad M, Swami BL, Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract J Radiat Res Appl Sci, 9, 1–7.

    Google Scholar 

  12. Song, Z., Chang, Y., Xie, H., Yu, X.-F., Chu, P. K., & Chen, T. (2017). Decorated ultrathin bismuth selenide nanosheets as targeted theranostic agents for in vivo imaging guided cancer radiation therapy NPG Asia Mater, 9, e439–e439. https://doi.org/10.1038/am.2017.167

    Article  Google Scholar 

  13. Zhu, B., Li, Y., Lin, Z., Zhao, M., Xu, T., Wang, C., & Deng, N. (2016). Silver Nanoparticles induce HePG-2 cells apoptosis through ROS-mediated signaling pathways. Nanoscale Res Lett, 11, 198. https://doi.org/10.1186/s11671-016-1419-4

    Article  Google Scholar 

  14. Elumalai, D., Hemavathi, M., Deepaa, C. V., & Kaleena, P. K. (2017). Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria dengue and filariasis vectors. Parasite Epidemiol Control, 2, 15–26. https://doi.org/10.1016/j.parepi.2017.09.001

    Article  Google Scholar 

  15. Li, J., Chen, J., Wang, H., Chen, N., Wang, Z., Guo, L., & Deepak, F. L. (2018). In situ atomic-scale study of particle-mediated nucleation and growth in amorphous bismuth to nanocrystal phase transformation. Advances Science (Weinh), 5, 1700992. https://doi.org/10.1002/advs.201700992

    Article  Google Scholar 

  16. Giannini, C., Ladisa, M., Altamura, D., Siliqi, D., Sibillano, T., & De Caro, L. (2016). X-ray diffraction: A powerful technique for the multiple-length-scale structural analysis of nanomaterials. Crystals, 6, 87.

    Article  Google Scholar 

  17. Shanmugam, C., Sivasubramanian, G., Parthasarathi, B., Baskaran, K., Balachander, R., & Parameswaran, V. R. (2015). Antimicrobial, free radical scavenging activities and catalytic oxidation of benzyl alcohol by nano-silver synthesized from the leaf extract of Aristolochia indica L. A promenade towards sustainability Applied Nanoscience, 6, 711–723. https://doi.org/10.1007/s13204-015-0477-8

    Article  Google Scholar 

  18. Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M. C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88, 412–419. https://doi.org/10.1093/toxsci/kfi256

    Article  Google Scholar 

  19. Cory, A. H., Owen, T. C., Barltrop, J. A., & Cory, J. G. (1991). Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Communications, 3, 207–212. https://doi.org/10.3727/095535491820873191

    Article  Google Scholar 

  20. Jain, S., & Mehata, M. S. (2017). Medicinal plant leaf extract and pure flavonoid mediated green synthesis of silver nanoparticles and their enhanced antibacterial property. Science Reports, 7, 15867. https://doi.org/10.1038/s41598-017-15724-8

    Article  Google Scholar 

  21. Noginov, M. A., et al. (2006). The effect of gain and absorption on surface plasmons in metal nanoparticles. Applied Physics B, 86, 455–460. https://doi.org/10.1007/s00340-006-2401-0

    Article  Google Scholar 

  22. Christopher, J. G., Saswati, B., & Ezilrani, P. (2015). Optimization of parameters for biosynthesis of silver nanoparticles using leaf extract of Aegle marmelos. Brazilian Archives of Biology and Technology, 58, 702–710. https://doi.org/10.1590/s1516-89132015050106

    Article  Google Scholar 

  23. Zhang, J., Tang, H., Liu, Z., & Chen, B. (2017). Effects of major parameters of nanoparticles on their physical and chemical properties and recent application of nanodrug delivery system in targeted chemotherapy. International Journal of Nanomedicine, 12, 8483–8493. https://doi.org/10.2147/ijn.S148359

    Article  Google Scholar 

  24. Tang, L., et al. (2014). Investigating the optimal size of anticancer nanomedicine. Proceedings of the National Academy of Sciences, 111, 15344–15349. https://doi.org/10.1073/pnas.1411499111

    Article  Google Scholar 

  25. Sarkar, S., & Kotteeswaran, V. (2018). Green synthesis of silver nanoparticles from aqueous leaf extract of Pomegranate (Punica granatum) and their anticancer activity on human cervical cancer cells. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9, 025014. https://doi.org/10.1088/2043-6254/aac590

  26. Jyoti, K., Baunthiyal, M., & Singh, A. (2019). Characterization of silver nanoparticles synthesized using Urtica dioica Linn leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9, 217–227. https://doi.org/10.1016/j.jrras.2015.10.002

    Article  Google Scholar 

  27. Govindarajan, M., Vijayan, P., Kadaikunnan, S., Alharbi, N. S., & Benelli, G. (2016). One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica Effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms. Journal of Photochemistry and Photobiology B Biology, 162, 646–655. https://doi.org/10.1016/j.jphotobiol.2016.07.036

    Article  Google Scholar 

  28. Annamalai, A., Christina, V. L. P., Christina, V., & Lakshmi, P. T. V. (2012). Green synthesis and characterisation of Ag NPs using aqueous extract of Phyllanthus maderaspatensis L. Journal of Experimental Nanoscience, 9, 113–119. https://doi.org/10.1080/17458080.2011.631041

    Article  Google Scholar 

  29. Hedaginal, B. R., & Taranath, T. C. (2016). Phytosynthesis of silver nanoparticles by Thunbergia fragrans Roxb. and their characterization Int. Journal Pharm Science Review Research., 39, 54–58.

    Google Scholar 

  30. Shang, L., Nienhaus, K., & Nienhaus, G. (2014). Engineered nanoparticles interacting with cells: size matters. Journal of Nanobiotechnology, 12, 5. https://doi.org/10.1186/1477-3155-12-5

  31. AbdelRahim, K., Mahmoud, S. Y., Ali, A. M., Almaary, K. S., Mustafa, A.E.-Z.M.A., & Husseiny, S. M. (2017). Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer Saudi. Journal of Biological Sciences, 24, 208–216. https://doi.org/10.1016/j.sjbs.2016.02.025

    Article  Google Scholar 

  32. Peng, X., Rahman, M. A., Mao, H., & Shin, D. M. (2016). Nanomaterials facilitate tumor targeting and drug delivery. Austin J Cancer Clin Res, 3, 1072.

    Google Scholar 

  33. Hoshyar, N., Gray, S., Han, H., & Bao, G. (2016). The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine, 11, 673–692. https://doi.org/10.2217/nnm.16.5

    Article  Google Scholar 

  34. Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9, 852–858. https://doi.org/10.1039/b615357g

  35. Cummings, B. S., & Schnellmann, R. G. (2004). Measurement of Cell Death in Mammalian Cells. Current Protocols in Pharmacology, 25, 12. https://doi.org/10.1002/0471141755.ph1208s25

  36. Buttacavoli, M., Albanese, N. N., Di Cara, G., Alduina, R., Faleri, C., Gallo, M., Pizzolanti, G., Gallo, G., Feo, S., Baldi, F., & Cancemi, P. (2018) Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation. Oncotarget, 9, 9685–9705.

  37. Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, K. L., Hess, K. L., Jones, R. L., & Schlager, J. J. (2008). Unique cellular interaction of silver nanoparticles Size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 112, 13608–13619. https://doi.org/10.1021/jp712087m

    Article  Google Scholar 

  38. Gurunathan, S., Qasim, M., Park, C., Yoo, H., Kim, J-H., & Hong, K. (2018). Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. International Journal of Molecular Sciences, 19, 2269. https://doi.org/10.3390/ijms19082269

  39. Zamzami, N., Marchetti, P., Castedo, M., Zanin, C., Vayssière, J. L., Petit, P. X., & Kroemer, G. (1995). Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. The Journal of Experimental Medicine, 181, 1661–1672. https://doi.org/10.1084/jem.181.5.1661

    Article  Google Scholar 

  40. Giorgi, C., Baldassari, F., Bononi, A., Bonora, M., De Marchi, E., Marchi, S., Missiroli, S., Patergnani, S., Rimessi, A., Suski, J. M., Wieckowski, M. R., & Pinton, P. (2012). Mitochondrial Ca2+ and apoptosis. Cell Calcium, 52, 36–43. https://doi.org/10.1016/j.ceca.2012.02.008

  41. Lizarbe, M., Barrasa, J., Olmo, N., Gavilanes, F., & Turnay, J. (2013). Annexin-phospholipid interactions. Functional Implications International Journal of Molecular Sciences, 14, 2652–2683. https://doi.org/10.3390/ijms14022652

    Article  Google Scholar 

  42. Plackal Adimuriyil George, B., Kumar, N., Abrahamse, H., & Ray, S. S. (2018). Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Scientific Reports, 8, 14368. https://doi.org/10.1038/s41598-018-32480-5

  43. Miyayama, T., & Matsuoka, M. (2016). Involvement of lysosomal dysfunction in silver nanoparticle-induced cellular damage in A549 human lung alveolar epithelial cells. Journal of Occupational Medicine and Toxicology, 11, 1. https://doi.org/10.1186/s12995-016-0090-0

  44. Boya, P., & Kroemer, G. (2008). Lysosomal membrane permeabilization in cell death Oncogene, 27, 6434–6451. https://doi.org/10.1038/onc.2008.310

    Article  Google Scholar 

  45. Panzarini, E., Mariano, S., Carata, E., Mura, F., Rossi, M., & Dini, L. (2018). Intracellular transport of silver and gold nanoparticles and biological responses: An update. International Journal of Molecular Sciences, 19, 1305. https://doi.org/10.3390/ijms19051305

  46. Lu, J., et al. (2008). Mesoporous Silica nanoparticles for cancer therapy: Energy-dependent cellular uptake and delivery of paclitaxel to cancer cells. NanoBiotechnology, 3, 89–95. https://doi.org/10.1007/s12030-008-9003-3

    Article  Google Scholar 

  47. Goldberg, M., & Gomez-Orellana, I. (2003). Challenges for the oral delivery of macromolecules. Nature Reviews Drug Discovery, 2, 289–295. https://doi.org/10.1038/nrd1067

    Article  Google Scholar 

  48. Harvey, J., Hardy, S. C., & Ashford, M. L. J. (1999). Dual actions of the metabolic inhibitor, sodium azide on KATPchannel currents in the rat CRI-G1 insulinoma cell line. British Journal of Pharmacology, 126, 51–60. https://doi.org/10.1038/sj.bjp.0702267

    Article  Google Scholar 

  49. Kim, J. S., Yoon, T. J., Yu, K. N., Noh, M. S., Woo, M., Kim, B. G., Lee, K. H., Sohn, B. H., Park, S. B., Lee, J. K., & Cho, M. H. (2006). Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. Journal of Veterinary Science, 7, 321–326. https://doi.org/10.4142/jvs.2006.7.4.321

  50. Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer Aided-Drug Design, 7, 146–157. https://doi.org/10.2174/157340911795677602

    Article  Google Scholar 

  51. Jackson, L. P., Kümmel, D., Reinisch, K. M., & Owen, D. J. (2012). Structures and mechanisms of vesicle coat components and multisubunit tethering complexes. Current Opinion in Cell Biology, 24, 475–483. https://doi.org/10.1016/j.ceb.2012.05.013

    Article  Google Scholar 

  52. Schmid, S. L., Reed, D. K., Mohanakrishnan, A., Loerke, D., Spielman, S. J., & Kadlecova, Z. (2017). Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. Journal of Cell Biology, 216, 167–179. https://doi.org/10.1083/jcb.201608071

    Article  Google Scholar 

  53. Nnyigide, O. S., Lee, S-G., & Hyun, K. (2019). In silico characterization of the binding modes of surfactants with bovine serum albumin. Scientific Reports, 9, 10643. https://doi.org/10.1038/s41598-019-47135-2

Download references

Funding

This research was supported by the DST-PURSE Programme (5050).

Department of Science and Technology,Ministry of Science and Technology,DST-PURSE Programme (5050),Geeta Rai

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Rai.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Research Involving Humans and Animals Statement

PBMCs were isolated from whole blood obtained from three healthy donors after informed and written consent. Ethical consent for the use of human samples was obtained from the ethics committee of the Institute of Medical Sciences, Banaras Hindu University.

Informed Consent

Written and informed consent was obtained from healthy donors.

Ethical Statement

The authors state that the submitted work is original and not published elsewhere in any form or language. The presented data are original, honest, and without fabrication, falsification, or inappropriate data manipulation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, K., Das, D., Singh, S. et al. Green Synthesis of Silver Nanoparticles Using Musa balbisiana and Their Cytotoxic Effect on HL-60 and SiHa Cancer Cells Through Clathrin-Mediated Endocytosis. BioNanoSci. 12, 582–600 (2022). https://doi.org/10.1007/s12668-022-00955-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-022-00955-5

Keywords

Navigation