Skip to main content
Log in

Synthesis, Characterization, In Vitro and In Vivo Toxicity of CuO Nanoparticles Fabricated Through Rhus punjabensis Leaf Extract

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Copper nanoparticles were synthesized using Rhus punjabensis leaf extract and assessed for toxicity in vitro against brine shrimp Leishmania tropica and in vivo against Sprague–Dawley rats. The spherical biofunctionalized nanoparticles showed concentration and time-dependent toxicity during in vitro assays. Biocompatibility assessed against Sprague–Dawley rats at 50 and 100 mg/kg (low and high dose) depicted significant variation only in total bilirubin, alanine transaminase, and alkaline phosphatase in both male and female rats at both dose administration; however, non-significant change was recorded on other parameters. Antioxidative enzymes, total proteins, and nitrites also showed significant variation from control in both genders. Histological study revealed alteration in liver, heart, and lungs of male rats on higher dose administration, while female rats on low-dose administration were found safer. The results show that R. punjabensis-mediated CuO nanoparticles are safe at low dose and its application can be expanded as effectual antimicrobial and anticancer agents for pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nations, S., M. Wages, J. E. Canas, J. Maul, C. Theodorakis, and G. P. Cobb. 2011. “Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis.” Chemosphere 83(8): 1053-1061

  2. Krug, H. F., & Wick, P. (2011). Nanotoxicology: An interdisciplinary challenge. Angewandte Chemie International Edition, 50(6), 1260–1278. https://doi.org/10.1002/anie.201001037

    Article  Google Scholar 

  3. Jiang, J., Oberdörster, G., Elder, A., Gelein, R., Mercer, P., & Biswas, P. (2008). “Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology, 2(1), 33–42.

    Google Scholar 

  4. Oberdörster, G. (2010). Safety assessment for nanotechnology and nanomedicine: Concepts of nanotoxicology. Journal of internal medicine, 267(1), 89–105. https://doi.org/10.1111/j.1365-2796.2009.02187.x

    Article  Google Scholar 

  5. Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L., & Schlager, J. J. (2008). Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 112(43), 13608–13619. https://doi.org/10.1021/jp712087m

    Article  Google Scholar 

  6. Karmali, P. P., & Simberg, D. (2011). Interactions of nanoparticles with plasma proteins: Implication on clearance and toxicity of drug delivery systems. Expert Opinion on Drug Delivery, 8(3), 343–357.

    Google Scholar 

  7. Mahmoudi, M., Hofmann, H., Rothen-Rutishauser, B., & Petri-Fink, A. (2012). Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chemical Reviews, 112(4), 2323–2338. https://doi.org/10.1021/cr2002596

    Article  Google Scholar 

  8. Fadeel, B., & Garcia-Bennett, A. E. (2010). Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews, 62(3), 362–374.

    Google Scholar 

  9. Phull, A.-R., Abbas, Q., Ali, A., Raza, H., Zia, M., & Haq, I. U. (2016). Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future Journal of Pharmaceutical Sciences, 2(1), 31–36.

    Google Scholar 

  10. Naz, S., Islam, M., Tabassum, S., Fernandes, N. F., de Blanco, E. J., & Zia, M. (2019). Green synthesis of hematite (α-Fe2O3) nanoparticles using Rhus punjabensis extract and their biomedical prospect in pathogenic diseases and cancer. Journal of Molecular Structure, 5(1185), 1–7.

    Google Scholar 

  11. Naz, S., Kazmi, S. T., & Zia, M. (2019). CeO2 nanoparticles synthesized through green chemistry are biocompatible: In vitro and in vivo assessment. Journal of Biochemical and Molecular Toxicology, 33(5), e22291. https://doi.org/10.1002/jbt.22291

    Article  Google Scholar 

  12. Pradeep, A., & Chandrasekaran, G. (2006). FTIR study of Ni, Cu and Zn substituted nano-particles of MgFe2O4. Materials Letters, 60(3), 371–374.

    Google Scholar 

  13. Ren, G., Hu, D., Cheng, E. W., Vargas-Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterization of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–590.

    Google Scholar 

  14. Henson, T. E., Navratilova, J., & Tennant, A. H. (2019). In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology, 13, 795–811.

    Google Scholar 

  15. Shi, M., Kwon, H. S., & Peng, Z. (2012). Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano, 6(3), 2157–2164.

    Google Scholar 

  16. Naz, S., Gul, A., & Zia, M. (2020). On the toxicity of copper oxide nanoparticles: A review study. IET Nanobiotechnology, 14(1), 1–13.

    Google Scholar 

  17. Naz, S., B. Nasir, H. Ali, and M. Zia. (2021). Comparative toxicity of green and chemically synthesized CuO NPs during pregnancy and lactation in rats and offspring: Part I-hepatotoxicity. Chemosphere266: 128945

  18. Chang, Y. N., Zhang, M., & Xia, L. (2012). The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials. (Basel), 5(12), 2850–2871.

    Google Scholar 

  19. Ghareeb, M. A., Hussein, A. H., Hassan, M. F. M., Laila, A. R., Mona, A. M., & Amal, M. S. (2014). Antioxidant and cytotoxic activities of Tectona grandis linn. leaves. Internationl Journal Phytopharm, 5(2), 143–157.

    Google Scholar 

  20. Nithya, K., Yuvasree, P., & Neelakandeswari, N. (2014). Preparation and characterization of copper oxide nanoparticles. International Journal of Chemical Technology Research, 6, 2220–2222.

    Google Scholar 

  21. Jillani, S., M. Jelani, N. U. Hassan. (2018). Synthesis, characterization and biological studies of copper oxide nanostructures. Material Research Express 5, (4): 045006

  22. Pantidos, N., & Horsfall, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine and Nanotechnology, 05(5), 1.

    Google Scholar 

  23. Jefferson D. A. (2000). The surface activity of ultrafine particles’.Philosophical Transactions. Series A, Mathematical Physical, and Engineering Sciences 358, (1775): 2683 – 2692

  24. Ilyas, M., & Basheer, C. (2015). Impact of nanoparticles on human and environment: Review of toxicity factors, exposures, control strategies, and future prospects. Environmental Science and Pollution Research, 22(6), 4122–4143.

    Google Scholar 

  25. Hillyer, J. F., & Albrecht, R. M. (2001). Gastrointestinal persorption and tissue distribution of differently sized colloidal gold nanoparticles. Journal of Pharmaceutical Science, 90(12), 1927–1936.

    Google Scholar 

  26. Wang, Z., Li, N., Zhao, J., White, J. C., Qu, P., & Xing, B. (2012). CuO nanoparticle interaction with human epithelial cells: Cellular uptake, location, export, and genotoxicity. Chemical research in toxicology, 25(7), 1512–1521.

    Google Scholar 

  27. Lee, I. C., Ko, J. W., Park, S. H., Lim, J. O., Shin, I. S., Moon, C., Kim, S. H., Heo, J. D., & Kim, J. C. (2016). Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. International Journal of Nanomedicine, 11, 2883.

    Google Scholar 

  28. Mohammadyari, A., Razavipour, S. T., Mohammadbeigi, M., Negahdary, M., & Ajdary, M. (2014). Explore in-vivo toxicity assessment of copper oxide nanoparticle in Wistar rats. Journal of Biology Today’s World, 3(6), 124–128.

    Google Scholar 

  29. Arafa, A. F., Ghanem, H. Z., Soliman, M. S., & EL-Meligy, E. (2017). Modulation effects of quercetin against copper oxide nanoparticles-induced liver toxicity in rats. Egyptian Pharmaceutical Journal, 16(2), 78–86.

    Google Scholar 

  30. Chen, H., Yoshioka, H., Kim, G. S., Jung, J. E., Okami, N., Sakata, H., Maier, C. M., Narasimhan, P., Goeders, C. E., & Chan, P. H. (2011). Oxidative stress in ischemic brain damage: Mechanisms of cell death and potential molecular targets for neuroprotection. Antioxidants & Redox Signaling, 14(8), 1505–1517.

    Google Scholar 

  31. Manna, P., Ghosh, M., Ghosh, J., Das, J., & Sil, P. C. (2012). Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: Role of IκBα/NF-κB, MAPKs and mitochondrial signal. Nanotoxicology, 6(1), 1–21.

    Google Scholar 

  32. Lee, I. C., Ko, J. W., Park, S. H., Shin, N. R., Shin, I. S., Moon, C., Kim, J. H., Kim, H. C., & Kim, J. C. (2016). Comparative toxicity and biodistribution assessments in rats following subchronic oral exposure to copper nanoparticles and microparticles. Particle and Fibre Toxicology, 13(1), 56–72.

    Google Scholar 

  33. Lei, R. C., Wu, B., Yang, H., Ma, C., Shi, Q., Wang, Q., Wang, Y., Yuan, M., & Liao, M. (2008). Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicology and Applied Pharmacology, 232(2), 292–301.

    Google Scholar 

  34. Ibrahim, M. A., Khalaf, A. A., Galal, M. K., Ogaly, H. A., & Hassan, A. H. (2015). Ameliorative influence of green tea extract on copper nanoparticle-induced hepatotoxicity in rats. Nanoscale Research Letters, 10(1), 1–9.

    Google Scholar 

  35. Naz, S., Nasir, B., Ali, H., Zia, M. (2021). Comparative toxicity of green and chemically synthesized CuO NPs during pregnancy and lactation in rats and offspring: Part I-hepatotoxicity. Chemosphere 266: 128945

  36. Nasrullah, M., Gul, F. Z., Hanif, S., Mannan, A., Naz, S., Ali, J. S., & Zia, M. (2020). Green and chemical syntheses of CdO NPs: A comparative study for yield attributes, biological characteristics, and toxicity concerns. ACS Omega, 5(11), 5739–5747.

    Google Scholar 

  37. Gutteridge, J. M. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41(12), 1819–28.

    Google Scholar 

  38. Sarkar, A., Das, J., Manna, P., & Sil, P. C. (2011). Nano-copper induces oxidative stress and apoptosis in kidney via both extrinsic and intrinsic pathways. Toxicology, 290(2), 208–217.

    Google Scholar 

  39. Xu, P., Xu, J., Liu, S., & Yang, Z. (2012). Nano copper induced apoptosis in podocytes via increasing oxidative stress. Journal of Hazardous Materials, 241, 279–286.

    Google Scholar 

  40. Yang, B., Wang, Q., Lei, R., Wu, C., Shi, C., Wang, Q., Yuan, Y., et al. (2010). Systems toxicology used in nanotoxicology: Mechanistic insights into the hepatotoxicity of nano-copper particles from toxicogenomics. Journal of Nanoscience and Nanotechnology, 10(12), 8527–8537.

    Google Scholar 

  41. Liao, M., & Liu, H. (2012). Gene expression profiling of nephrotoxicity from copper nanoparticles in rats after repeated oral administration. Environmental Toxicology and Pharmacology, 34(1), 67–80.

    Google Scholar 

  42. Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Biology and Medicine, 11(1), 81–128.

    Google Scholar 

  43. Fatahian-Dehkordi, R., Reaisi, M., Heidarnejad, M. S., & Mohebbi, A. (2017). Serum biochemical status and morphological changes in mice ovary associated with copper oxide nanoparticles after thiamine therapy. Journal of Herbmed Pharmacology, 6(1), 21–26.

    Google Scholar 

  44. Song, M. F., Y. S. Li, H. Kasai, K. Kawai K. 2011. Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. Journal of clinical biochemistry and nutrition. 50(3): 211

  45. Kung, M. L., Hsieh, S. L., Wu, C. C., Chu, T. H., Lin, Y. C., Yeh, B. W., & Hsieh, S. (2015). Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Nanoscale, 7(5), 1820–1829.

    Google Scholar 

  46. Doudi, M., & Setorki, M. (2014). Acute effect of nano-copper on liver tissue and function in rat. Nanomedicine Journal, 1(5), 331–338.

    Google Scholar 

  47. Rodhe, Y., Skoglund, S., Wallinder, I. O., Potácová, Z., & Möller, L. (2015). Copper-based nanoparticles induce high toxicity in leukemic HL60 cells. Toxicology in vitro, 29(7), 1711–1719.

    Google Scholar 

  48. Wang, D., Lin, Z., Wang, T., Yao, Z., Qin, M., Zheng, S., & Lu, W. (2016). Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? Journal of Hazardous Materials, 308, 328–34.

    Google Scholar 

  49. Yokohira, M., Kuno, T., Yamakawa, K., Hosokawa, K., Matsuda, Y., Hashimoto, N., Suzuki, S., Saoo, K., & Imaida, K. (2008). Lung toxicity of 16 fine particles on intratracheal instillation in a bioassay model using f344 male rats. Toxicologic Pathology, 36(4), 620–631.

    Google Scholar 

  50. Reddy, A. R. N., Colony, R. K., Pradesh, K. A., & Kumar, C. P. (2013). Pulmonary toxicity of copper oxide (CuO) nanoparticles in rats. Journal of Medical Sciences, 13(7), 571–577.

    Google Scholar 

  51. Chen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., et al. (2006). Acute Toxicological effects of copper nanoparticles in vivo. Toxicology letters, 163(2), 109–120.

    Google Scholar 

  52. El-Hussein, E. H. M. A., Abdel-Aziz, A., & El-Mehasseb, I. (2016). Effects of aluminum oxide (Al2O3) nanoparticles on ECG, myocardial inflammatory cytokines, redox state, and connexin 43 and lipid profile in rats: Possible cardioprotective effect of gallic acid. Canadian Journal of Physiology and Pharmacology, 94(08), 868–878.

    Google Scholar 

  53. Lei, R., Wu, C., & Yang, B. (2008). Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity. Toxicology and Applied Pharmacology, 232(2), 292–301.

    Google Scholar 

  54. Wang, D., Lin, Z., & Wang, T. (2016). Where does the toxicity of metal oxide nanoparticles come from: The nanoparticles, the ions, or a combination of both? Journal of Hazardous Materials, 308, 328–334.

    Google Scholar 

  55. Meng, H., Chen, Z., & Xing, G. (2007). Ultrahigh reactivity provokes nanotoxicity: Explanation of oral toxicity of nano-copper particles. Toxicology Letters, 175(1–3), 102–110.

    Google Scholar 

  56. Rodhe, Y., Skoglund, S., & Wallinder, I. O. (2015). Copper-based nanoparticles induce high toxicity in leukemic HL60 cells. Toxicology in Vitro, 29(7), 1711–1719.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Zia.

Ethics declarations

Conflict of Interest

None.

Research Involving Humans and Animals Statement

None.

Ethical Statement

Animal study was carried out at the Primate Facility of Faculty of Biological Sciences, according to the National Institute of Health Guidelines. Approved protocol (Bch#0267) by the ethics committee of the Quaid-i-Azam University, Islamabad, Pakistan, was followed in this study.

Informed Consent

None.

Consent to Participate

All authors agreed to participate in this investigation.

Consent for Publication

All authors agreed to participate in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, S., Hanif, S., Ali, H. et al. Synthesis, Characterization, In Vitro and In Vivo Toxicity of CuO Nanoparticles Fabricated Through Rhus punjabensis Leaf Extract. BioNanoSci. 11, 946–956 (2021). https://doi.org/10.1007/s12668-021-00906-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00906-6

Keywords

Navigation