Skip to main content
Log in

Electromagnetic Hybrid Nano-Blood Pumping via Peristalsis Through an Endoscope Having Blood Clotting in Presence of Hall and Ion Slip Currents

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

This article refers to an investigation of peristaltic transport of hybrid nanoparticle suspended blood through an endoscopic annulus with elastic walls in the existence of blood clotting under electromagnetic forces (EMF). The dual effects of Hall and ion-slip currents are accounted for. The energy equation is formulated invoking internal heat source and viscous-Ohmic dissipation terms. Blood is used as a base fluid, and silver and aluminum oxide nanoparticles are dispersed in order to have a hybrid blood suspension. The impacts of the geometrical shape of nanoparticles are examined. The governing partial differential equations (PDEs) for the proposed flow model are simplified under the assumption of long wavelength and low Reynolds number. The transformed non-linear coupled PDEs are solved analytically by employing the homotopy perturbation method (HPM) with Mathematica computational software. The graphical illustrations are presented to interpret various flow constraints of interest. Outcomes reflect that the Hall and ion slip parameters have diminishing behavior on the blood flow while the opposite fashion prevails on it for increasing Hartmann number. Augmenting Hall and ion slip parameters result in an upsurge in the blood temperature. Expanding the volume fraction of nanoparticles enhances the blood temperature. Hall and ion slip effects are to reduce the wall shear stress (WSS) at the peristaltic wall. The maximum amplitude of the heat transfer coefficient is computed for the brick shape of nanoparticles when compared to the other shapes of nanoparticles. The streamlines are configured with trapping ed bolus phenomena to outline the blood flow pattern in the endoscope. Our model may be pertinent to physiological systems, medical simulation devices, transport phenomena in pharmacology, nano-pharmacological delivery systems, surgical procedures, etc. In endoscopy, a magnetic force field is used in order to detect or treat diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abrar, M. N., Sagheer, M., & Hussian, S. (2020). Thermodynamics analysis of Joule heating and internal heat source over an inclined ciliated tube. Physica A, 549, 123983.

    Article  MathSciNet  Google Scholar 

  2. Choi, S. U. S. (1995). Enhancing thermal conductivity of fluids with nanoparticles. In Siginer, D. A., & Wang, H. P. (Eds.) Developments and applications of non-newtonian flows (pp. 66–99). New York: ASME.

  3. Hayat, T., Aslam, N., Rafiq, M., & Alsaedi, A. (2017). Studying peristaltic transport of shape nanozise silver-water nanoparticles in digestive system with heat generation effect. International Journal of Heat and Mass Transfer, 106, 18–24.

    Article  Google Scholar 

  4. Abbasi, F. M., Hayat, T., & Ahmed, B. (2015). Peristaltic transport of copper-water nanofluid saturating porous medium. Physica E: Low-dimensional Systems and Nanostructures, 67, 47–53.

    Article  Google Scholar 

  5. Nadeem, S., Sadaf, H., & Akbar, N. S. (2015). Effects of nanoparticles on the peristaltic motion of tangent hyperbolic fluid model in an annulus. Alexandria Engineering Journal, 54, 843–851.

    Article  Google Scholar 

  6. Akbar, N. S., & Butt, A. W. (2016). Bio mathematical venture for the metallic nanoparticles due to ciliary motion. Computer Methods and Programs in Biomedicine, 134, 43–51.

    Article  Google Scholar 

  7. Nadeem, S., & Ijaz, S. (2016). Slip examination on the wall of tapered stenosed artery with emerging application of nanoparticles. International Journal of Thermal Sciences, 109, 401–412.

    Article  Google Scholar 

  8. Ijaz, S., & Nadeem, S. (2017). A biomedical solicitation examination of nanoparticles as drug agent to minimize the hemodynamics of stenotic channel. European Physical Journal - Plus, 132, 448.

    Article  Google Scholar 

  9. Hussain, F., Ellahi, R., Zeeshana, A., & Vafai, K. (2018). Modelling study on heated couple stress fluid peristaltically conveying gold nanoparticles through coaxial tubes: a remedy for gland tumors and arthritis. Journal of Molecular Liquids, 268, 149–155.

    Article  Google Scholar 

  10. Ijaz, S., & Nadeem, S. (2017). Biomedical theoretical investigation of blood mediated nanoparticles (Ag-Al2,O3/blood) impact on hemodynamics of overlapped stenotic artery. Journal of Molecular Liquids, 248, 809–821.

    Article  Google Scholar 

  11. Ijaz, S., Iqbal, Z., Maraj, E. N., & Nadeem, S. (2018). Investigate of Cu-CuO / blood mediated transportation in stenosed artery with unique features for theoretical outcomes of hemodynamics. Journal of Molecular Liquids, 254, 421–432.

    Article  Google Scholar 

  12. Ijaz, S., & Nadeem, S. (2018). Consequences of blood mediated nano transportation as drug agent to attenuate the atherosclerotic lesions with permeability impacts. Journal of Molecular Liquids, 262, 565–575.

    Article  Google Scholar 

  13. Hayat, T., Ali, N., & Asghar, S. (2007). Hall effects on peristaltic flow of a Maxwell fluid in a porous medium. Physics Letters A, 363, 397–403.

    Article  MATH  Google Scholar 

  14. Haroun, M. H. (2007). A mathematical study of Hall effects on peristaltic transport of hydromagnetic flow through a porous medium. Journal of Porous Media, 10, 687–700.

    Article  Google Scholar 

  15. Gad, N. S. (2010). Effect of hall currents on interaction of peristaltic flow with pulsatile magnetofluid through a porous medium. Journal of Porous Media, 13(2), 103–110.

    Article  Google Scholar 

  16. Abo-Eldahab, E. M., Barakat, E. I., & Nowar, K. I. (2010). Effects of Hall and ion-slip currents on peristaltic transport of a couple stress fluid. International Journal of Applied Mathematics and Physics, 2, 145–157.

    MATH  Google Scholar 

  17. Abo-Eldahab, E. M., Barakat, E. I., & Nowar, K. I. (2010). Hall currents and ion-slip effects on the MHD peristaltic transport. International Journal of Applied Mathematics and Physics, 2, 113–123.

    MATH  Google Scholar 

  18. Mekheimer, K. S., & El Kot, M.A. (2008). Influence of magnetic field and Hall currents on blood flow through a stenotic artery. Applied Mathematics and Mechanics (English Edition), 29(8), 1093–1104.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mekheimer, K. S., Salem, A. M., & Zaher, A. Z. (2014). Peristatcally induced MHD ion slip flow in a porous medium due to a surface acoustic wavy wall. Journal of the Egyptian Mathematical Society, 22, 143–151.

    Article  MathSciNet  MATH  Google Scholar 

  20. Asghar, S., Hussain, Q., Hayat, T., & Alsaadi, F. (2014). Hall and ion slip effects on peristaltic flow and heat transfer analysis with Ohmic heating. Applied Mathematics and Mechanics (English Edition), 35, 1509–1524.

    Article  MathSciNet  MATH  Google Scholar 

  21. Hayat, T., Abbasi, F. M., Alsaedi, A., & Alsaadi, F. (2014). Hall and Ohmic heating effects on the peristaltic transport of a Carreau-Yasuda fluid in an asymmetric channel. Zeitschrift für Naturforschung, 69, 43–51.

    Article  Google Scholar 

  22. Gad, N. S. (2014). Effects of Hall currents on peristaltic transport with compliant wall. Applied Mathematics and Computation, 235, 546–554.

    Article  MathSciNet  MATH  Google Scholar 

  23. Abbasi, F. M., Hayat, T., & Ahmad, B. (2015). Peristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: Applications in drug delivery. Journal of Molecular Liquids, 207, 248–255.

    Article  Google Scholar 

  24. Eldabe, N. T., Elogail, M. A., Elshaboury, S. M., & Hasan, A. A. (2016). Hall effects on the peristaltic transport of Williamson fluid through a porous medium with heat and mass transfer. Applied Mathematical Modelling, 40, 315–328.

    Article  MathSciNet  MATH  Google Scholar 

  25. Ellahi, R., Bhatti, M. M., & Pop, I. (2016). Effects of hall and ion slip on MHD peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct. International Journal of Numerical Methods for Heat & Fluid Flow, 26(6), 1802–1820.

    Article  MathSciNet  MATH  Google Scholar 

  26. Hayat, T., Shafique, M., Tanveer, A., & Alsaedi, A. (2016). Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating. Journal of Magnetism and Magnetic Materials, 407, 51–59.

    Article  Google Scholar 

  27. Hayat, T., Zahir, H., Tanveer, A., & Alsaedi, A. (2016). Influences of Hall current and chemical reaction in mixed convective peristaltic flow of Prandtl fluid. Journal of Magnetism and Magnetic Materials, 407, 321–327.

    Article  Google Scholar 

  28. Hayat, T., Asghar, S., Tanveer, A., & Alsaedi, A. (2019). Effects of Hall current and ion-slip on the peristaltic motion of couple stress fluid with thermal deposition. Neural Computing & Applications, 31, 117–126.

    Article  Google Scholar 

  29. Rafiq, M., Yasmin, H., Hayat, T., & Alsaadi, F. (2019). Effect of Hall and ion-slip on the peristaltic transport of nanofluid: A biomedical application. Chinese Journal of Physics, 60, 208–227.

    Article  MathSciNet  Google Scholar 

  30. Ramesh, K., Tripathi, D., Bég, O. A., & Kadir, A. (2019). Slip and Hall current effects on jeffrey fluid suspension flow in a peristaltic hydromagnetic blood micropump. Iranian Journal of Science and Technology-Transactions of Mechanical Engineering, 43, 675–692.

    Article  Google Scholar 

  31. Bég, O. A., & Tripathi, D. (2014). Peristaltic pumping of nanofluids modeling and simulation methods and applications. Berlin: Springer.

    Google Scholar 

  32. Latham, T. W. (1966). Fluid motions in a peristaltic pump. M Sc Thesis, Massachusetts Institute of Technology).

  33. Nadeem, S., & Akbar, N. S. (2010). Influence of radially varying MHD on the peristaltic flow in an annulus with heat and mass transfer. Journal of the Taiwan Institute of Chemical Engineers, 41, 286–294.

    Article  Google Scholar 

  34. Abdelsalam, S.I., & Vafai, K. (2017). Particulate suspension effect on peristaltically induced unsteady pulsatile flow in a narrow artery: blood flow model. Mathematical Biosciences, 283, 91–105.

    Article  MathSciNet  MATH  Google Scholar 

  35. Elmaboud, Y. A., Mekheimer, K. S., & Emam, T. G. (2019). Numerical examination of gold nanoparticles as a drug carrier on peristaltic blood flow through physiological vessels: Cancer therapy treatment. BioNanoScience, 9, 952–965.

    Article  Google Scholar 

  36. Elaqeeb, T., Shah, N. A., & Mekheimer, K. S. (2019). Hemodynamic characteristics of gold nanoparticle blood flow through a tapered stenosed vessel with variable nanofluid viscosity. BioNanoScience, 9, 245–255.

    Article  Google Scholar 

  37. Akbar, N. S., Nadeem, S., Hayat, T., & Hendi, A. A. (2012). Peristaltic flow of a nanofluid with slip effects. Meccanica, 47(5), 1283–1294.

    Article  MathSciNet  MATH  Google Scholar 

  38. Akbar, S. N., Nadeem, S., Hayat, T., & Hendi, A. A. (2012). Peristaltic flow of a nanofluid in a non-uniform tube. Heat and Mass Transfer, 48, 451–459.

    Article  MATH  Google Scholar 

  39. Bhatti, M. M., & Zeeshan, A. (2012). Heat and mass transfer analysis on peristaltic flow of particle-fluid suspension with slip effects. Journal of Mechanics in Medicine and Biology, 17, 1750028.

    Article  Google Scholar 

  40. Hina, S., Mustafa, M., Hayat, T., & Alsaedi, A. (2015). Peristaltic flow of couple-stress fluid with heat and mass transfer: an application in biomedicine. Journal of Mechanics in Medicine and Biology, 15, 1550042.

    Article  Google Scholar 

  41. Sarkar, B. C., Das, S., Jana, R. N., & Makinde, O. D. (2015). Magnetohydrodynamic peristaltic flow of nanofluids in a convectively heated vertical asymmetric channel in presence of thermal radiation. Journal of Nanofluids, 4(4), 461–473.

    Article  Google Scholar 

  42. Reddy, M. G., & Makinde, O.D. (2016). Magnetohydrodynamic peristaltic transport of Jeffery nanofluid in an asymmetric channel. Journal of Molecular Liquids, 223, 1242–1248.

    Article  Google Scholar 

  43. Zeeshan, A., Ijaz, N., Bhatti, M. M., & Mann, A. B. (2017). Mathematical study of peristaltic propulsion of solid-liquid multiphase flow with a biorheological fluid as the base fluid in a duct. Chinese Journal of Physics, 55, 1596–1604.

    Article  Google Scholar 

  44. Tripathi, D., Jhorar, R., Bég, O. A., & Kadir, A. (2017). Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel. Journal of Molecular Liquids, 236, 358–367.

    Article  Google Scholar 

  45. Rashidi, M. M., Yang, Z., Bhatti, M. M., & Abbas, M. A. (2018). Heat and mass transfer analysis on MHD blood flow of Casson fluid model due to peristaltic wave. Journal of Molecular Liquids, 22, 2439–2448.

    Google Scholar 

  46. Reddy, K. V., Makinde, O. D., & Reddy, M. G. (2018). Thermal analysis of MHD electro-osmotic peristaltic pumping of Casson fluid through a rotating asymmetric micro-channel. Indian Journal of Physics, 92 (11), 1439–1448.

    Article  Google Scholar 

  47. Reddy, K. V., Reddy, M. G., & Makinde, O. D. (2019). Thermophoresis and Brownian motion effects on magnetohydrodynamics electro-osmotic Jeffrey nanofluid peristaltic flow in asymmetric rotating microchannel. Journal of Nanofluids, 8(2), 349–358.

    Article  Google Scholar 

  48. Vaidya, H., Rajashekhar, C., Manjunatha, G., Prasad, K. V., Makinde, O. D., & Sreenadh, S. (2019). Peristaltic motion of non-Newtonian fluid with variable liquid properties in a convectively heated non-uniform tube: Rabinowitsch fluid model. Journal of Enhanced Heat Transfer, 26(3), 277294.

    Article  Google Scholar 

  49. Mekheimer, K. S., Haroun, M. H., & Elkot, M. A. (2011). Effects of magnetic field, porosity, and wall properties for anisotropically elastic multi-stenosis arteries on blood flow characteristics. Applied Mathematics and Mechanics (English Edition), 32(8), 1047–64.

    Article  MathSciNet  MATH  Google Scholar 

  50. Mustafa, M., Hina, S., Hayat, T., & Alsaedi, A. (2012). Influence of wall properties on the peristaltic flow of a nanofluid: analytic and numerical solutions. International Journal of Heat and Mass Transfer, 55, 4871–4877.

    Article  Google Scholar 

  51. Sadaf, H., & Malik, R. (2018). Nanofluid flow analysis in the presence of slip effects and wall properties by means of contraction and expansion. Communications in Theoretical Physics, 70, 337–343.

    Article  Google Scholar 

  52. Sadaf, H., Iftikhar, N., & Akbar, N. S. (2019). Physiological fluid flow analysis by means of contraction and expansion with addition of hybrid nanoparticles. European Physical Journal - Plus, 134, 232.

    Article  Google Scholar 

  53. Akram, J., & Akbar, N. S. (2020). Biological analysis of Carreau nanofluid in an endoscope with variable viscosity. Physica Scripta, 95, 055201.

    Article  Google Scholar 

  54. Mekheimer, K. S., Haroun, M. H., & Elkot, M. A. (2011). Effects of magnetic field, porosity, and wall properties for anisotropically elastic multi-stenosis arteries on blood flow characteristics. Applied Mathematics and Mechanics (English Edition), 32(8), 1047–1064.

    Article  MathSciNet  MATH  Google Scholar 

  55. Reddy, M. G., & Reddy, K.V. (2015). Influence of Joule heating on MHD peristaltic flow of a nanofluid with compliant walls. Process Engineering, 127, 1002–1009.

    Google Scholar 

  56. Ijaz, S., & Nadeem, S. (2018). Transportation of nanoparticles investigation as a drug agent to attenuate the atherosclerotic lesion under the wall properties impact. Chaos, Solitons and Fractals, 112, 52–65.

    Article  MathSciNet  Google Scholar 

  57. Ijaz, S., & Nadeem, S. (2018). Shape factor and sphericity features examination of Cu and Cu-Al2,O3 / blood through atherosclerotic artery under the impact of wall characteristic. Journal of Molecular Liquids, 271, 361–372.

    Article  Google Scholar 

  58. Akbar, N. S. (2013). Eyring Prandtl fluid flow with convective boundary conditions in small intestines. International Journal of Biomathematics, 6, 350034.

    Article  MathSciNet  MATH  Google Scholar 

  59. Akbar, N. S., & Nadeem, S. (2014). Convective heat transfer of a Sutterby fluid in an inclined asymmetric channel with partial slip. Heat Transfer Research, 45, 219.

    Google Scholar 

  60. Akbar, N. S. (2014). Peristaltic flow of a tangent hyperbolic fluid with convective boundary condition. European Physical Journal - Plus, 129(2014), 214.

    Article  Google Scholar 

  61. Sayed, H. M., Aly, E. H., & Vajravelu, K. (2016). Influence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channel. Alexandria Engineering Journal, 55, 2209–2220.

    Article  Google Scholar 

  62. El Misiery, A. E. M., El Hakeem, A., El Naby, A., & El Nagar, A. H. (2003). Effects of a fluid with variable viscosity and an endoscope on peristaltic motion. Journal of the Physical Society of Japan, 72, 89–93.

    Article  MATH  Google Scholar 

  63. Hayat, T., Momoniat, E., & Mahomed, F. M. (2006). Endoscope effects on MHD peristaltic flow of a power-law fluid. Mathematical Problems in Engineering, 2006, 84276.

    Article  MathSciNet  MATH  Google Scholar 

  64. Tripathi, D. (2011). Numerical study on peristaltic flow of generalized Burgers’ fluids in uniform tubes in the presence of an endoscope. International Journal for Numerical Methods in Biomedical Engineering, 27, 1812–1828.

    Article  MathSciNet  MATH  Google Scholar 

  65. Abdelsalam, S. I., & Bhatti, M.M. (2018). The impact of impinging TiO2, nanoparticles in Prandtl nanofluid along with endoscopic and variable magnetic field effects on peristaltic blood flow. Multidiscipline Modeling in Materials and Structures, 14(3), 530–548.

    Article  Google Scholar 

  66. Hayat, T., Ali, N., Asghar, S., & Siddiqui, A. M. (2006). Exact peristaltic flow in tubes with an endoscope. Applied Mathematics and Computation, 182, 359–368.

    Article  MathSciNet  MATH  Google Scholar 

  67. Mekheimer, K. S., & Abdelmaboud, Y. (2008). The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: application of an endoscope. Physics Letters A, 372, 1657–1665.

    Article  MATH  Google Scholar 

  68. Akbar, N. S., & Nadeem, S. (2012). Characteristics of heating scheme and mass transfer on the peristaltic flow for an Eyring Powell fluid in an endoscope. International Journal of Heat and Mass Transfer, 55, 375–383.

    Article  MATH  Google Scholar 

  69. Akbar, N. S., Raza, M., & Ellahi, R. (2016). Endoscopic effects with entropy generation analysis in peristalsis for the thermal conductivity of H2O + Cu nanofluid. Journal of Applied Fluid Mechanics, 9, 1721–1730.

    Article  Google Scholar 

  70. Tripathi, D., & Bég, O.A. (2012). Magnetohydrodynamic peristaltic flow of a couple stress fluid through coaxial channels containing a porous medium. Journal of Mechanics in Medicine and Biology, 12, 1250088.

    Article  Google Scholar 

  71. Bhatti, M. M., Zeeshan, A., & Ellahi, R. (2016). Endoscope analysis on peristaltic blood flow of Sisko fluid with titanium magnetonanoparticles. Communications Biologie et Mdecine, 78, 29–41.

    Google Scholar 

  72. Ramesh, K., & Devakar, M. (2019). Effect of endoscope on the peristaltic transport ofa couple stress fluid with heat transfer: application to biomedicine. Nonlinear Engineering, 8, 619–29.

    Article  Google Scholar 

  73. Mekheimer, K. S., & Elkot, M.A. (2010). Suspension model for blood flow through arterial catheterization. Chemical Engineering Communications, 197, 1195–214.

    Article  Google Scholar 

  74. Nadeem, S., Ijaz, S., & Akbar, N. S. (2013). Nanoparticle analysis for blood flow of Prandtl fluid model with stenosis. International Nano Letters, 3(35), 1–13.

    Google Scholar 

  75. Ijaz, S., & Nadeem, S. (2016). Examination of nanoparticles as a drug carrier on blood flow through catheterized composite stenosed artery with permea226ble walls. Computer Methods and Programs in Biomedicine, 133, 83–94.

    Article  Google Scholar 

  76. Shahzadi, I., & Nadeem, S. (2017). Role of inclined magnetic field and copper nanoparticles on peristaltic flow of nanofluid through inclined annulus: Application of the clot model. Communications in Theoretical Physics, 67, 704–716.

    Article  MathSciNet  Google Scholar 

  77. Ijaz, S., Shahzadi, I., Nadeem, S., & Saleem, A. (2017). A clot model examination: with impulsion of nanoparticle under infuence of variable viscosity and slip effects. Communications in Theoretical Physics, 68, 667–677.

    Article  MathSciNet  Google Scholar 

  78. Bhatti, M. M., Zeeshan, A., Ellahi, R., Bég, O. A., & Kadir, A. (2019). Effects of coagulation on the two-phase peristaltic pumping of magnetized prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chinese Journal of Physics, 58, 222–234.

    Article  Google Scholar 

  79. Abdelsalam, S. I., & Bhatti, M.M. (2019). New insight into auNP applications in tumour treatment and cosmetics through wavy annuli at the nanoscale. Scientific Reports(Article number), 260.

  80. Cowling, T. G. (1957). Magnetohydrodynamics. Interscience Publisher, Inc, New York.

Download references

Funding

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Research involving Humans and Animals Statement

None

Informed Consent

None

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix:

Appendix:

$$ \begin{array}{@{}rcl@{}} A(z,t)&=&8\pi^{3} \epsilon[\frac{E_{3}}{2\pi}\sin2\pi(z-t)-(E_{1}+E_{2})\cos2\pi(z-t)]\\ w_{0}&=&-\frac{(w_{2}{r_{2}^{2}}+w_{3}{r_{2}^{3}}+w_{4}{r_{2}^{4}})\log{r_{1}} - (w_{2}{r_{1}^{2}}+w_{3}{r_{1}^{3}}+w_{4}{r_{1}^{4}})\log{r_{2}}}{\log{r_{1}}-\log{r_{2}}}\\ w_{1}&=&-\frac{w_{2}({r_{1}^{2}}-{r_{2}^{2}})+w_{3}({r_{1}^{3}}-{r_{2}^{3}})+w_{4}({r_{1}^{4}}-{r_{2}^{4}})}{\log{r_{1}}-\log{r_{2}}}\\ w_{2}&=&\frac{1}{4}[1+\frac{x_{2}}{x_{1}}\frac{Gr r_{2}}{r_{1}-r_{2}}+\frac{x_{3}}{x_{1}}\frac{M^{2}(1+\beta_{e}\beta_{i})r_{1}r_{2}}{(1+\beta_{e}\beta_{i})^{2}+{\beta_{e}^{2}}}+\frac{A(z,t)}{x_{1}}]\\ w_{3}&=&-\frac{1}{9}[\frac{x_{2}}{x_{1}}\frac{Gr}{r_{1}-r_{2}}+\frac{x_{3}}{x_{1}}\frac{M^{2}(1+\beta_{e}\beta_{i})}{(1+\beta_{e}\beta_{i})^{2}+{\beta_{e}^{2}}} (r_{1}+r_{2})]\\ w_{4}&=&\frac{1}{16}\frac{x_{3}}{x_{1}}\frac{M^{2}(1+\beta_{e}\beta_{i})}{(1+\beta_{e}\beta_{i})^{2}+{\beta_{e}^{2}}}\\ \theta_{0}&=&-\frac{z_{4}\log{r_{1}}-z_{3}(Bi \log{r_{2}} +\frac{x_{4}}{r_{2}})}{z_{2}}-\frac{r_{2}}{r_{1}-r_{2}}\\ \theta_{1}&=&-\frac{z_{1}}{r_{2}z_{2}} \end{array} $$
$$ \begin{array}{@{}rcl@{}} \theta_{2}&=&-\frac{1}{4x_{4}}[x_{1}Br (r_{1}+r_{2})^{2}+\frac{x_{3}Br M^{2}{r_{1}^{2}}{r_{2}^{2}}}{(1+\beta_{e}\beta_{i})^{2}+{\beta_{e}^{2}}}+\chi]\\ \theta_{3}&=&\frac{2}{9}(r_{1}+r_{2})[2x_{1}Br+\frac{x_{3}Br M^{2}r_{1}r_{2}}{(1+\beta_{e}\beta_{i})^{2}+{\beta_{e}^{2}}}]\\ \theta_{4}&=&-\frac{1}{16}[4x_{1}Br+\frac{x_{3}Br M^{2}r_{1}r_{2}}{(1+\beta_{e}\beta_{i})^{2}+{\beta_{e}^{2}}}({r_{1}^{2}}+{r_{2}^{2}}+4r_{1}r_{2})]\\ \theta_{5}&=&\frac{2}{25}\frac{x_{3}}{x_{4}}\frac{Br M^{2}}{(1+\beta_{e}\beta_{i})^{2}+{\beta_{e}^{2}}}(r_{1}+r_{2})\\ \theta_{6}&=&-\frac{1}{36}\frac{x_{3}}{x_{4}}\frac{Br M^{2}}{(1+\beta_{e}\beta_{i})^{2}+{\beta_{e}^{2}}}\\ z_{1}&=&Bi r_{2}-Bi {r_{1}^{2}} r_{2} \theta_{2}+Bi {r_{2}^{3}} \theta_{2}+2 {r_{2}^{2}} x_{4} \theta_{2}-Bi {r_{1}^{3}} r_{2} \theta_{3}\\&&+Bi {r_{2}^{4}} \theta_{3}+3 {r_{2}^{3}} x_{4} \theta_{3}\\ &&-Bi {r_{1}^{4}} r_{2} \theta_{4}+Bi {r_{2}^{5}} \theta_{4}+ 4 {r_{2}^{4}} x_{4} \theta_{4}-Bi {r_{1}^{5}} r_{2} \theta_{5}+Bi {r_{2}^{6}} \theta_{5}\\ &&+5 {r_{2}^{5}} x_{4} \theta_{5}-Bi {r_{1}^{6}} r_{2} \theta_{6}+B_{i} {r_{2}^{7}} \theta_{6}+6 {r_{2}^{6}} x_{4} \theta_{6}\\ z_{2}&=& Bi(\log{r_{1}} -\log{r_{2}}) -\frac{x_{4}}{r_{2}}\\ z_{3}&=&-1-\frac{r_{2}}{r_{1}-r_{2}}+{r_{1}^{2}} \theta_{2}+{r_{1}^{3}} \theta_{3}+{r_{1}^{4}} \theta_{4}+{r_{1}^{5}} \theta_{5}+{r_{1}^{6}} \theta_{6}\\ z_{4}&=&-\frac{Bi r_{2}}{r_{1}-r_{2}}+Bi {r_{2}^{2}} \theta_{2}+2 r_{2} x_{4} \theta_{2}+Bi {r_{2}^{3}} \theta_{3}+3 {r_{2}^{2}} x_{4} \theta_{3}\\ &&+Bi {r_{2}^{4}} \theta_{4}+4 {r_{2}^{3}} x_{4} \theta_{4}+Bi {r_{2}^{5}} \theta_{5}+5 {r_{2}^{4}} x_{4} \theta_{5}+Bi {r_{2}^{6}} \theta_{6}+6 {r_{2}^{5}} x_{4} \theta_{6} \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Pal, T.K. & Jana, R.N. Electromagnetic Hybrid Nano-Blood Pumping via Peristalsis Through an Endoscope Having Blood Clotting in Presence of Hall and Ion Slip Currents. BioNanoSci. 11, 848–870 (2021). https://doi.org/10.1007/s12668-021-00853-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00853-2

Keywords

Navigation